15,602 research outputs found

    The Hopf Algebra Structure of the Character Rings of Classical Groups

    Full text link
    The character ring \CGL of covariant irreducible tensor representations of the general linear group admits a Hopf algebra structure isomorphic to the Hopf algebra \Sym$ of symmetric functions. Here we study the character rings \CO and \CSp of the orthogonal and symplectic subgroups of the general linear group within the same framework of symmetric functions. We show that \CO and \CSp also admit natural Hopf algebra structures that are isomorphic to that of \CGL, and hence to \Sym. The isomorphisms are determined explicitly, along with the specification of standard bases for \CO and \CSp analogous to those used for \Sym. A major structural change arising from the adoption of these bases is the introduction of new orthogonal and symplectic Schur-Hall scalar products. Significantly, the adjoint with respect to multiplication no longer coincides, as it does in the \CGL case, with a Foulkes derivative or skew operation. The adjoint and Foulkes derivative now require separate definitions, and their properties are explored here in the orthogonal and symplectic cases. Moreover, the Hopf algebras \CO and \CSp are not self-dual. The dual Hopf algebras \CO^* and \CSp^* are identified. Finally, the Hopf algebra of the universal rational character ring \CGLrat of mixed irreducible tensor representations of the general linear group is introduced and its structure maps identified.Comment: 38 pages, uses pstricks; new version is a major update, new title, new material on rational character

    Plethystic Vertex Operators and Boson-Fermion Correspondences

    Get PDF
    We study the algebraic properties of plethystic vertex operators, introduced in J. Phys. A: Math. Theor. 43 405202 (2010), underlying the structure of symmetric functions associated with certain generalized universal character rings of subgroups of the general linear group, defined to stabilize tensors of Young symmetry type characterized by a partition of arbitrary shape \pi. Here we establish an extension of the well-known boson-fermion correspondence involving Schur functions and their associated (Bernstein) vertex operators: for each \pi, the modes generated by the plethystic vertex operators and their suitably constructed duals, satisfy the anticommutation relations of a complex Clifford algebra. The combinatorial manipulations underlying the results involve exchange identities exploiting the Hopf-algebraic structure of certain symmetric function series and their plethysms.Comment: 21 pages, LaTeX. Minor typos corrected. Added brief survey of related work and new reference
    corecore