1,084 research outputs found
Visual estimation of ACL injury risk: Efficient assessment method, group differences, and expertise mechanisms
Simple observational assessment of movement quality (e.g., drop vertical jump biomechanics) is an efficient and low cost method for anterior cruciate ligament (ACL) injury screening and prevention. A recently developed test (see www.ACL-IQ.org) has revealed substantial cross-professional/group differences in visual ACL injury risk estimation skill. Specifically, parents, sport coaches, and to some degree sports medicine physicians, would likely benefit from training or the use of decision support tools. In addition, expertise mechanisms (perceptual-cognitive characteristics of skilled performers) were investigated in order to design training systems to improve risk estimation performance
The Complexity of Drawing Graphs on Few Lines and Few Planes
It is well known that any graph admits a crossing-free straight-line drawing
in and that any planar graph admits the same even in
. For a graph and , let denote
the minimum number of lines in that together can cover all edges
of a drawing of . For , must be planar. We investigate the
complexity of computing these parameters and obtain the following hardness and
algorithmic results.
- For , we prove that deciding whether for a
given graph and integer is -complete.
- Since , deciding is NP-hard for . On the positive side, we show that the problem
is fixed-parameter tractable with respect to .
- Since , both and
are computable in polynomial space. On the negative side, we show
that drawings that are optimal with respect to or
sometimes require irrational coordinates.
- Let be the minimum number of planes in needed
to cover a straight-line drawing of a graph . We prove that deciding whether
is NP-hard for any fixed . Hence, the problem is
not fixed-parameter tractable with respect to unless
Drawing Planar Graphs with Few Geometric Primitives
We define the \emph{visual complexity} of a plane graph drawing to be the
number of basic geometric objects needed to represent all its edges. In
particular, one object may represent multiple edges (e.g., one needs only one
line segment to draw a path with an arbitrary number of edges). Let denote
the number of vertices of a graph. We show that trees can be drawn with
straight-line segments on a polynomial grid, and with straight-line
segments on a quasi-polynomial grid. Further, we present an algorithm for
drawing planar 3-trees with segments on an
grid. This algorithm can also be used with a small modification to draw maximal
outerplanar graphs with edges on an grid. We also
study the problem of drawing maximal planar graphs with circular arcs and
provide an algorithm to draw such graphs using only arcs. This is
significantly smaller than the lower bound of for line segments for a
nontrivial graph class.Comment: Appeared at Proc. 43rd International Workshop on Graph-Theoretic
Concepts in Computer Science (WG 2017
Essential and checkpoint functions of budding yeast ATM and ATR during meiotic prophase are facilitated by differential phosphorylation of a meiotic adaptor protein, Hop1
A hallmark of the conserved ATM/ATR signalling is its ability to mediate a wide range of functions utilizing only a limited number of adaptors and effector kinases. During meiosis, Tel1 and Mec1, the budding yeast ATM and ATR, respectively, rely on a meiotic adaptor protein Hop1, a 53BP1/Rad9 functional analog, and its associated kinase Mek1, a CHK2/Rad53-paralog, to mediate multiple functions: control of the formation and repair of programmed meiotic DNA double strand breaks, enforcement of inter-homolog bias, regulation of meiotic progression, and implementation of checkpoint responses. Here, we present evidence that the multi-functionality of the Tel1/Mec1-to-Hop1/Mek1 signalling depends on stepwise activation of Mek1 that is mediated by Tel1/Mec1 phosphorylation of two specific residues within Hop1: phosphorylation at the threonine 318 (T318) ensures the transient basal level Mek1 activation required for viable spore formation during unperturbed meiosis. Phosphorylation at the serine 298 (S298) promotes stable Hop1-Mek1 interaction on chromosomes following the initial phospho-T318 mediated Mek1 recruitment. In the absence of Dmc1, the phospho-S298 also promotes Mek1 hyper-activation necessary for implementing meiotic checkpoint arrest. Taking these observations together, we propose that the Hop1 phospho-T318 and phospho-S298 constitute key components of the Tel1/Mec1- based meiotic recombination surveillance (MRS) network and facilitate effective coupling of meiotic recombination and progression during both unperturbed and challenged meiosis
Impact of boundaries on fully connected random geometric networks
Many complex networks exhibit a percolation transition involving a
macroscopic connected component, with universal features largely independent of
the microscopic model and the macroscopic domain geometry. In contrast, we show
that the transition to full connectivity is strongly influenced by details of
the boundary, but observe an alternative form of universality. Our approach
correctly distinguishes connectivity properties of networks in domains with
equal bulk contributions. It also facilitates system design to promote or avoid
full connectivity for diverse geometries in arbitrary dimension.Comment: 6 pages, 3 figure
Achieving community-based postpartum follow up in eastern Uganda: the field experience from the MamaMiso Study on antenatal distribution of misoprostol.
BackgroundAdvance provision of misoprostol to women during antenatal care aims to achieve broader access to uterotonics for the prevention of postpartum hemorrhage. Studies of this community-based approach usually involve antenatal education as well as timely postpartum follow-up visits to confirm maternal and neonatal outcomes. The MamaMiso study in Mbale, Uganda sought to assess the feasibility of conducting follow-up visits in the postpartum period following advance provision of misoprostol for postpartum hemorrhage prevention. MamaMiso recruited women during antenatal care visits. Participants were asked to contact the research team within 48 h of giving birth so that postpartum follow-up visits could be carried out at their homes. Women's baseline and delivery characteristics were collected and analyzed with respect to follow-up time ('on time' ≤ 7 days, 'late' > 7 days, and 'lost to follow up'). Every woman who was followed up late due to a failure to report the delivery was asked for the underlying reasons for the delay. When attempts at following up participants were unsuccessful, a file note was generated explaining the details of the failure. We abstracted data and identified themes from these notes.ResultsOf 748 recruited women, 700 (94%) were successfully followed up during the study period, 465 (62%) within the first week postpartum. The median time to follow up was 4 days and was similar for women who delivered at home or in facilities and for women who had attended or unattended births. Women recruited at the urban hospital site (as opposed to rural health clinics) were more likely to be lost to follow up or followed up late. Of the women followed up late, 202 provided a reason. File notes explaining failed attempts at follow up were generated for 164 participants. Several themes emerged from qualitative analysis of these notes including phone difficulties, inaccurate baseline information, misperceptions, postpartum travel, and the condition of the mother and neonate.ConclusionsKeeping women connected to the health system in the postpartum period is feasible, though reaching them within the first week of their delivery is challenging. Understanding characteristics of women who are harder to reach can help tailor follow-up efforts and elucidate possible biases in postpartum study data. Trial Registration Number ISRCTN70408620 December 28, 2011
On Smooth Orthogonal and Octilinear Drawings: Relations, Complexity and Kandinsky Drawings
We study two variants of the well-known orthogonal drawing model: (i) the
smooth orthogonal, and (ii) the octilinear. Both models form an extension of
the orthogonal, by supporting one additional type of edge segments (circular
arcs and diagonal segments, respectively).
For planar graphs of max-degree 4, we analyze relationships between the graph
classes that can be drawn bendless in the two models and we also prove
NP-hardness for a restricted version of the bendless drawing problem for both
models. For planar graphs of higher degree, we present an algorithm that
produces bi-monotone smooth orthogonal drawings with at most two segments per
edge, which also guarantees a linear number of edges with exactly one segment.Comment: Appears in the Proceedings of the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017
Phytoplankton Cell Size Reduction in Response to Warming Mediated by Nutrient Limitation
Shrinking of body size has been proposed as one of the universal responses of organisms to global climate warming. Using phytoplankton as an experimental model system has supported the negative effect of warming on body-size, but it remains controversial whether the size reduction under increasing temperatures is a direct temperature effect or an indirect effect mediated over changes in size selective grazing or enhanced nutrient limitation which should favor smaller cell-sizes. Here we present an experiment with a factorial combination of temperature and nutrient stress which shows that most of the temperature effects on phytoplankton cell size are mediated via nutrient stress. This was found both for community mean cell size and for the cell sizes of most species analyzed. At the highest level of nutrient stress, community mean cell size decreased by 46% per degrees C, while it decreased only by 4.7% at the lowest level of nutrient stress. Individual species showed qualitatively the same trend, but shrinkage per degrees C was smaller. Overall, our results support the hypothesis that temperature effects on cell size are to a great extent mediated by nutrient limitation. This effect is expected to be exacerbated under field conditions, where higher temperatures of the surface waters reduce the vertical nutrient transport
Rhesus TRIM5α disrupts the HIV-1 capsid at the inter-hexamer interfaces
TRIM proteins play important roles in the innate immune defense against retroviral infection, including human immunodeficiency virus type-1 (HIV-1). Rhesus macaque TRIM5α (TRIM5αrh) targets the HIV-1 capsid and blocks infection at an early post-entry stage, prior to reverse transcription. Studies have shown that binding of TRIM5α to the assembled capsid is essential for restriction and requires the coiled-coil and B30.2/SPRY domains, but the molecular mechanism of restriction is not fully understood. In this study, we investigated, by cryoEM combined with mutagenesis and chemical cross-linking, the direct interactions between HIV-1 capsid protein (CA) assemblies and purified TRIM5αrh containing coiled-coil and SPRY domains (CC-SPRYrh). Concentration-dependent binding of CC-SPRYrh to CA assemblies was observed, while under equivalent conditions the human protein did not bind. Importantly, CC-SPRYrh, but not its human counterpart, disrupted CA tubes in a non-random fashion, releasing fragments of protofilaments consisting of CA hexamers without dissociation into monomers. Furthermore, such structural destruction was prevented by inter-hexamer crosslinking using P207C/T216C mutant CA with disulfide bonds at the CTD-CTD trimer interface of capsid assemblies, but not by intra-hexamer crosslinking via A14C/E45C at the NTD-NTD interface. The same disruption effect by TRIM5αrh on the inter-hexamer interfaces also occurred with purified intact HIV-1 cores. These results provide insights concerning how TRIM5α disrupts the virion core and demonstrate that structural damage of the viral capsid by TRIM5α is likely one of the important components of the mechanism of TRIM5α-mediated HIV-1 restriction. © 2011 Zhao et al
Diel surface temperature range scales with lake size
Ecological and biogeochemical processes in lakes are strongly dependent upon water temperature. Long-term surface warming of many lakes is unequivocal, but little is known about the comparative magnitude of temperature variation at diel timescales, due to a lack of appropriately resolved data. Here we quantify the pattern and magnitude of diel temperature variability of surface waters using high-frequency data from 100 lakes. We show that the near-surface diel temperature range can be substantial in summer relative to long-term change and, for lakes smaller than 3 km2, increases sharply and predictably with decreasing lake area. Most small lakes included in this study experience average summer diel ranges in their near-surface temperatures of between 4 and 7°C. Large diel temperature fluctuations in the majority of lakes undoubtedly influence their structure, function and role in biogeochemical cycles, but the full implications remain largely unexplored
- …
