291 research outputs found

    Evidence for incompressible states in a metal graphene tunnel junction in high magnetic field

    Full text link
    We present transport measurements of tunnel junctions made between Cu and graphene in a magnetic field. We observe a transition to a Landau level like structure at high fields, as well as a set of sharp features in the tunneling spectra that shift with gate and tunnel probe voltage along the lines of constant charge density. We explain the sharp features with the formation of degeneracy split localized Landau levels, and addition of electrons to those levels one by one. A large capacitive coupling to the tunnel probe also increases the gate voltage spacing between the Landau levels.Comment: 12 pages, 3 figure

    Trajectory-based interpretation of laser light diffraction by a sharp edge

    Get PDF
    In the diffraction pattern produced by a half-plane sharp edge when it obstructs the passage of a laser beam, two characteristic regions are noticeable. There is a central region, where it can be noticed the diffraction of laser light in the region of geometric shadow, while intensity oscillations are observed in the non-obstructed area. On both sides of the edge, there are also very long light traces along the normal to the edge of the obstacle. The theoretical explanation to this phenomenon is based on the Fresnel-Kirchhoff diffraction theory applied to the Gaussian beam propagation behind the obstacle. Here we have supplemented this explanation by considering electromagnetic flow lines, which provide a more complete interpretation of the phenomenon in terms of electric and magnetic fields and flux lines, and that can be related, at the same time, with average photon paths.Comment: 13 pages, 5 figure

    Fine Structure in Energy Spectra of Ultrasmall Au Nanoparticles

    Full text link
    We have studied tunneling into individual Au nanoparticles of estimated diameters 2-5 nm, at dilution refrigerator temperatures. The I-V curves indicate resonant tunneling via discrete energy levels of the particle. Unlike previously studied normal metal particles of Au and Al, in these samples we find that the lowest energy tunneling resonances are split into clusters of 2-10 subresonances. Such effects appear to be increasingly important in smaller grains, as might be expected from the larger characteristic energies.Comment: 1 pdf fil

    Saturation of Spin-Polarized Current in Nanometer Scale Aluminum Grains

    Full text link
    We describe measurements of spin-polarized tunnelling via discrete energy levels of single Aluminum grains. In high resistance samples (GΩ\sim G\Omega), the spin-polarized tunnelling current rapidly saturates as a function of the bias voltage. This indicates that spin-polarized current is carried only via the ground state and the few lowest in energy excited states of the grain. At the saturation voltage, the spin-relaxation rate T11T_1^{-1} of the highest excited states is comparable to the electron tunnelling rate: T111.5106s1T_1^{-1}\approx 1.5\cdot 10^6 s^{-1} and 107s110^7s^{-1} in two samples. The ratio of T11T_1^{-1} to the electron-phonon relaxation rate is in agreement with the Elliot-Yafet scaling, an evidence that spin-relaxation in Al grains is governed by the spin-orbit interaction.Comment: 5 pages, 4 figure

    On Wheeler's delayed-choice Gedankenexperiment and its laboratory realization

    Get PDF
    Here, we present an analysis and interpretation of the experiment performed by Jacques et al. (2007 Science 315, 966), which represents a realization of Wheeler's delayed-choice Gedankenexperiment. Our analysis is based on the evolution of the photon state, since the photon enters into the Mach-Zehnder interferometer with a removable beam-splitter until it exits. Given the same incident photon state onto the output beam-splitter, BS_output, the photon's state at the exit will be very different depending on whether BS_output is on or off. Hence, the statistics of photon counts collected by the two detectors, positioned along orthogonal directions at the exit of the interferometer, is also going to be very different in either case. Therefore, it is not that the choice of inserting (on) or removing (off) a beam-splitter leads to a delayed influence on the photon behavior before arriving at the beam-splitter, but that such a choice influences the photon state at and after BS_output, i.e., after it has exited from the Mach-Zehnder interferometer. The random on/off choice at BS_output has no delayed effect on the photon to behave as a wave or a corpuscle at the entrance and inside the interferometer, but influences the subsequent evolution of the photon state incident onto BS_output.Comment: 7 pages, 4 figure

    Modelling Electron Spin Accumulation in a Metallic Nanoparticle

    Full text link
    A model describing spin-polarized current via discrete energy levels of a metallic nanoparticle, which has strongly asymmetric tunnel contacts to two ferromagnetic leads, is presented. In absence of spin-relaxation, the model leads to a spin-accumulation in the nanoparticle, a difference (Δμ\Delta\mu) between the chemical potentials of spin-up and spin-down electrons, proportional to the current and the Julliere's tunnel magnetoresistance. Taking into account an energy dependent spin-relaxation rate Ω(ω)\Omega (\omega), Δμ\Delta\mu as a function of bias voltage (VV) exhibits a crossover from linear to a much weaker dependence, when eΩ(Δμ)|e|\Omega (\Delta\mu) equals the spin-polarized current through the nanoparticle. Assuming that the spin-relaxation takes place via electron-phonon emission and Elliot-Yafet mechanism, the model leads to a crossover from linear to V1/5V^{1/5} dependence. The crossover explains recent measurements of the saturation of the spin-polarized current with VV in Aluminum nanoparticles, and leads to the spin-relaxation rate of 1.6MHz\approx 1.6 MHz in an Aluminum nanoparticle of diameter 6nm6nm, for a transition with an energy difference of one level spacing.Comment: 37 pages, 7 figure

    Optimisation by mathematical modeling of physicochemical characteristics of concrete containers in radioactive waste management

    Get PDF
    A method for obtaining an optimal concrete container composition used for storing radioactive waste from nuclear power plants is developed. It is applied to the radionuclides 60Co, 137Cs, 85Sr, and 54Mn. A set of recipes for concrete composition leading to an optimal solution is given

    Transport in Graphene Tunnel Junctions

    Get PDF
    We present a technique to fabricate tunnel junctions between graphene and Al and Cu, with a Si back gate, as well as a simple theory of tunneling between a metal and graphene. We map the differential conductance of our junctions versus probe and back gate voltage, and observe fluctuations in the conductance that are directly related to the graphene density of states. The conventional strong-suppression of the conductance at the graphene Dirac point can not be clearly demonstrated, but a more robust signature of the Dirac point is found: the inflection in the conductance map caused by the electrostatic gating of graphene by the tunnel probe. We present numerical simulations of our conductance maps, confirming the measurement results. In addition, Al causes strong n-doping of graphene, Cu causes a moderate p-doping, and in high resistance junctions, phonon resonances are observed, as in STM studies.Comment: 22 pages, 5 figure

    Coherence loss and revivals in atomic interferometry: A quantum-recoil analysis

    Get PDF
    The coherence effects induced by external photons coupled to matter waves inside a MachZehnder three-grating interferometer are analyzed. Alternatively to atomphoton entanglement scenarios, the model considered here only relies on the atomic wavefunction and the momentum shift induced in it by the photon scattering events. A functional dependence is thus found between the observables, namely the fringe visibility and the phase shift, and the transversal momentum transfer distribution. Good quantitative agreement is found when comparing the results obtained from our model with the experimental data. © 2012 IOP Publishing Ltd.MD, MB and DA acknowledge support from the Ministry of Science of Serbia under Projects OI171005, OI171028 and III45016. ASS acknowledges support from the Ministerio de Econom´ıa y Competitividad (Spain) under Projects FIS2010-22082 and FIS2010-29596-C02-01, as well as for a “Ram´on y Cajal” Research Fellowship.Peer Reviewe
    corecore