44,588 research outputs found

    Measuring the degree of unitarity for any quantum process

    Full text link
    Quantum processes can be divided into two categories: unitary and non-unitary ones. For a given quantum process, we can define a \textit{degree of the unitarity (DU)} of this process to be the fidelity between it and its closest unitary one. The DU, as an intrinsic property of a given quantum process, is able to quantify the distance between the process and the group of unitary ones, and is closely related to the noise of this quantum process. We derive analytical results of DU for qubit unital channels, and obtain the lower and upper bounds in general. The lower bound is tight for most of quantum processes, and is particularly tight when the corresponding DU is sufficiently large. The upper bound is found to be an indicator for the tightness of the lower bound. Moreover, we study the distribution of DU in random quantum processes with different environments. In particular, The relationship between the DU of any quantum process and the non-markovian behavior of it is also addressed.Comment: 7 pages, 2 figure

    Semivariogram methods for modeling Whittle-Mat\'ern priors in Bayesian inverse problems

    Full text link
    We present a new technique, based on semivariogram methodology, for obtaining point estimates for use in prior modeling for solving Bayesian inverse problems. This method requires a connection between Gaussian processes with covariance operators defined by the Mat\'ern covariance function and Gaussian processes with precision (inverse-covariance) operators defined by the Green's functions of a class of elliptic stochastic partial differential equations (SPDEs). We present a detailed mathematical description of this connection. We will show that there is an equivalence between these two Gaussian processes when the domain is infinite -- for us, R2\mathbb{R}^2 -- which breaks down when the domain is finite due to the effect of boundary conditions on Green's functions of PDEs. We show how this connection can be re-established using extended domains. We then introduce the semivariogram method for estimating the Mat\'ern covariance parameters, which specify the Gaussian prior needed for stabilizing the inverse problem. Results are extended from the isotropic case to the anisotropic case where the correlation length in one direction is larger than another. Finally, we consider the situation where the correlation length is spatially dependent rather than constant. We implement each method in two-dimensional image inpainting test cases to show that it works on practical examples

    On model selection criteria for climate change impact studies

    Full text link
    Climate change impact studies inform policymakers on the estimated damages of future climate change on economic, health and other outcomes. In most studies, an annual outcome variable is observed, e.g. annual mortality rate, along with higher-frequency regressors, e.g. daily temperature and precipitation. Practitioners use summaries of the higher-frequency regressors in fixed effects panel models. The choice over summary statistics amounts to model selection. Some practitioners use Monte Carlo cross-validation (MCCV) to justify a particular specification. However, conventional implementation of MCCV with fixed testing-to-full sample ratios tends to select over-fit models. This paper presents conditions under which MCCV, and also information criteria, can deliver consistent model selection. Previous work has established that the Bayesian information criterion (BIC) can be inconsistent for non-nested selection. We illustrate that the BIC can also be inconsistent in our framework, when all candidate models are misspecified. Our results have practical implications for empirical conventions in climate change impact studies. Specifically, they highlight the importance of a priori information provided by the scientific literature to guide the models considered for selection. We emphasize caution in interpreting model selection results in settings where the scientific literature does not specify the relationship between the outcome and the weather variables.Comment: Additional simulation results available from authors by reques

    Terminal-Set-Enhanced Community Detection in Social Networks

    Full text link
    Community detection aims to reveal the community structure in a social network, which is one of the fundamental problems. In this paper we investigate the community detection problem based on the concept of terminal set. A terminal set is a group of users within which any two users belong to different communities. Although the community detection is hard in general, the terminal set can be very helpful in designing effective community detection algorithms. We first present a 2-approximation algorithm running in polynomial time for the original community detection problem. In the other issue, in order to better support real applications we further consider the case when extra restrictions are imposed on feasible partitions. For such customized community detection problems, we provide two randomized algorithms which are able to find the optimal partition with a high probability. Demonstrated by the experiments performed on benchmark networks the proposed algorithms are able to produce high-quality communities.Comment: INFOCOM 201

    W-jet Tagging: Optimizing the Identification of Boosted Hadronically-Decaying W Bosons

    Get PDF
    A method is proposed for distinguishing highly boosted hadronically decaying W's (W-jets) from QCD-jets using jet substructure. Previous methods, such as the filtering/mass-drop method, can give a factor of ~2 improvement in S/sqrt(B) for jet pT > 200 GeV. In contrast, a multivariate approach including new discriminants such as R-cores, which characterize the shape of the W-jet, subjet planar flow, and grooming-sensitivities is shown to provide a much larger factor of ~5 improvement in S/sqrt(B). For longitudinally polarized W's, such as those coming from many new physics models, the discrimination is even better. Comparing different Monte Carlo simulations, we observe a sensitivity of some variables to the underlying event; however, even with a conservative estimates, the multivariate approach is very powerful. Applications to semileptonic WW resonance searches and all-hadronic W+jet searches at the LHC are also discussed. Code implementing our W-jet tagging algorithm is publicly available at http://jets.physics.harvard.edu/wtagComment: Version to appear in PR

    X-Ray Spectral Variability of Extreme BL Lac AGN H1426+428

    Get PDF
    Between 7 March 2002 and 15 June 2002, intensive X-ray observations were carried out on the extreme BL Lac object H1426+428 with instruments on board the Rossi X-ray Timing Explorer (RXTE). These instruments provide measurements of H1426+428 in the crucial energy range that characterizes the first peak of its spectral energy distribution. This peak, which is almost certainly due to synchrotron emission, has previously been inferred to be in excess of 100 keV. By taking frequent observations over a four-month campaign, which included \sim450 ksec of RXTE time, studies of flux and spectral variability on multiple timescales were performed, along with studies of spectral hysteresis. The 3-24 keV X-ray flux and spectra exhibited significant variability, implying variability in the location of the first peak of the spectral energy distribution. Hysteresis patterns were observed, and their characteristics have been discussed within the context of emission models.Comment: accepted for publication in Astrophysical Journa

    Spontaneous Relaxation of a Charge Qubit under Electrical Measurement

    Full text link
    In this work we first derive a generalized conditional master equation for quantum measurement by a mesoscopic detector, then study the readout characteristics of qubit measurement where a number of new features are found. The work would in particular highlight the qubit spontaneous relaxation effect induced by the measurement itself rather than an external thermal bath.Comment: 4 pages, 2 figures; an error in Eq.(8) is correcte

    Nonlinear dynamics of a cigar-shaped Bose-Einstein condensate coupled with a single cavity mode

    Full text link
    We investigate the nonlinear dynamics of a combined system which is composed of a cigar-shaped Bose-Einstein condensate and an optical cavity. The two sides couple dispersively. This system is characterized by its nonlinearity: after integrating out the freedom of the cavity mode, the potential felt by the condensate depends on the condensate itself. We develop a discrete-mode approximation for the condensate. Based on this approximation, we map out the steady configurations of the system. It is found that due to the nonlinearity of the system, the nonlinear levels of the system can fold up in some parameter regimes. That will lead to the breakdown of adiabaticity. Analysis of the dynamical stability of the steady states indicates that the same level structure also results in optical bistability.Comment: 8 pages, 5 figure
    corecore