15,265 research outputs found
Approximating the maximum ergodic average via periodic orbits
Let sigma: Sigma(A) -> Sigma(A) be a subshift of finite type, let M-sigma be the set of all sigma-invariant Borel probability measures on Sigma(A), and let f : Sigma(A) -> R be a Holder continuous observable. There exists at least one or-invariant measure A which maximizes integral f d mu. The following question was asked by B. R. Hunt, E. Ott and G. Yuan: how quickly can the maximum of the integrals integral f d mu be approximated by averages along periodic orbits of period less than p? We give an example of a Holder observable f for which this rate of approximation is slower than stretched-exponential in p
Genomic Adaptations to the Loss of a Conserved Bacterial DNA Methyltransferase.
UNLABELLED: CcrM is an orphan DNA methyltransferase nearly universally conserved in a vast group of Alphaproteobacteria. In Caulobacter crescentus, it controls the expression of key genes involved in the regulation of the cell cycle and cell division. Here, we demonstrate, using an experimental evolution approach, that C. crescentus can significantly compensate, through easily accessible genetic changes like point mutations, the severe loss in fitness due to the absence of CcrM, quickly improving its growth rate and cell morphology in rich medium. By analyzing the compensatory mutations genome-wide in 12 clones sampled from independent ΔccrM populations evolved for ~300 generations, we demonstrated that each of the twelve clones carried at least one mutation that potentially stimulated ftsZ expression, suggesting that the low intracellular levels of FtsZ are the major burden of ΔccrM mutants. In addition, we demonstrate that the phosphoenolpyruvate-carbohydrate phosphotransfer system (PTS) actually modulates ftsZ and mipZ transcription, uncovering a previously unsuspected link between metabolic regulation and cell division in Alphaproteobacteria. We present evidence that point mutations found in genes encoding proteins of the PTS provide the strongest fitness advantage to ΔccrM cells cultivated in rich medium despite being disadvantageous in minimal medium. This environmental sign epistasis might prevent such mutations from getting fixed under changing natural conditions, adding a plausible explanation for the broad conservation of CcrM.
IMPORTANCE: In bacteria, DNA methylation has a variety of functions, including the control of DNA replication and/or gene expression. The cell cycle-regulated DNA methyltransferase CcrM modulates the transcription of many genes and is critical for fitness in Caulobacter crescentus. Here, we used an original experimental evolution approach to determine which of its many targets make CcrM so important physiologically. We show that populations lacking CcrM evolve quickly, accumulating an excess of mutations affecting, directly or indirectly, the expression of the ftsZ cell division gene. This finding suggests that the most critical function of CcrM in C. crescentus is to promote cell division by enhancing FtsZ intracellular levels. During this work, we also discovered an unexpected link between metabolic regulation and cell division that might extend to other Alphaproteobacteria
Effects of (p)ppGpp on the progression of the cell cycle of Caulobacter crescentus.
Bacteria must control the progression of their cell cycle in response to nutrient availability. This regulation can be mediated by guanosine tetra- or pentaphosphate [(p)ppGpp], which are synthesized by enzymes of the RelA/SpoT homologue (Rsh) family, particularly under starvation conditions. Here, we study the effects of (p)ppGpp on the cell cycle of Caulobacter crescentus, an oligotrophic bacterium with a dimorphic life cycle. C. crescentus divides asymmetrically, producing a motile swarmer cell that cannot replicate its chromosome and a sessile stalked cell that is replication competent. The swarmer cell rapidly differentiates into a stalked cell in appropriate conditions. An artificial increase in the levels of (p)ppGpp in nonstarved C. crescentus cells was achieved by expressing a truncated relA gene from Escherichia coli, encoding a constitutively active (p)ppGpp synthetase. By combining single-cell microscopy, flow cytometry approaches, and swarming assays, we show that an increase in the intracellular concentration of (p)ppGpp is sufficient to slow down the swarmer-to-stalked cell differentiation process and to delay the initiation of chromosome replication. We also present evidence that the intracellular levels of two master regulators of the cell cycle of C. crescentus, DnaA and CtrA, are modulated in response to (p)ppGpp accumulation, even in the absence of actual starvation. CtrA proteolysis and DnaA synthesis seem indirectly inhibited by (p)ppGpp accumulation. By extending the life span of the motile nonreproductive swarmer cell and thus promoting dispersal and foraging functions over multiplication under starvation conditions, (p)ppGpp may play a central role in the ecological adaptation of C. crescentus to nutritional stresses
Biomass estimates of Pacific herring, Clupea pallasi, in California from the 1991-92 spawning-ground surveys
The spawning biomass of Pacific herring, Clupea
pallasi, estimated from spawning-ground surveys in
San Francisco Bay declined to 41,000 tons this season.
This was the second consecutive year that the San
Francisco Bay herring population estimate has declined.
In Tomales Bay, the 1991-92 season spawning biomass
estimate, including the catch of 24 tons from Bodega Bay,
was 1,238 tons. This was the third consecutive season
that the Tomales-Bodega area herring population has
increased.
The 1991-92 Humboldt Bay herring spawning biomass estimate
of 225 tons, was nearly half of last season's estimate of
400 tons.
December and January were the peak months of spawning
activity in all areas surveyed.
In San Francisco Bay, the first major spawn since the 1981-82 season occurred in the Sausalito area, and the Oakland-Alameda area accounted for 50% of all spawning activity.
A total of 3.5 million m2 of eelgrass, Zostera marina,
was measured in Tomales Bay this season. The eelgrass
density declined in most beds this season. (46p.
Streamlined islands and the English Channel megaflood hypothesis
Recognising ice-age catastrophic megafloods is important because they had significant impact on large-scale drainage evolution and patterns of water and sediment movement to the oceans, and likely induced very rapid, short-term effects on climate. It has been previously proposed that a drainage system on the floor of the English Channel was initiated by catastrophic flooding in the Pleistocene but this suggestion has remained controversial. Here we examine this hypothesis through an analysis of key landform features. We use a new compilation of multi- and single-beam bathymetry together with sub-bottom profiler data to establish the internal structure, planform geometry and hence origin of a set of 36 mid-channel islands. Whilst there is evidence of modern-day surficial sediment processes, the majority of the islands can be clearly demonstrated to be formed of bedrock, and are hence erosional remnants rather than depositional features. The islands display classic lemniscate or tear-drop outlines, with elongated tips pointing downstream, typical of streamlined islands formed during high-magnitude water flow. The length-to-width ratio for the entire island population is 3.4 ± 1.3 and the degree-of-elongation or k-value is 3.7 ± 1.4. These values are comparable to streamlined islands in other proven Pleistocene catastrophic flood terrains and are distinctly different to values found in modern-day rivers. The island geometries show a correlation with bedrock type: with those carved from Upper Cretaceous chalk having larger length-to-width ratios (3.2 ± 1.3) than those carved into more mixed Paleogene terrigenous sandstones, siltstones and mudstones (3.0 ± 1.5). We attribute these differences to the former rock unit having a lower skin friction which allowed longer island growth to achieve minimum drag. The Paleogene islands, although less numerous than the Chalk islands, also assume more perfect lemniscate shapes. These lithologies therefore reached island equilibrium shape more quickly but were also susceptible to total erosion. Our observations support the hypothesis that the islands were initially carved by high-water volume flows via a unique catastrophic drainage of a pro-glacial lake in the southern North Sea at the Dover Strait rather than by fluvial erosion throughout the Pleistocene
Enhanced heat transport by turbulent two-phase Rayleigh-B\'enard convection
We report measurements of turbulent heat-transport in samples of ethane
(CH) heated from below while the applied temperature difference straddled the liquid-vapor co-existance curve . When the sample
top temperature decreased below , droplet condensation occurred
and the latent heat of vaporization provided an additional heat-transport
mechanism.The effective conductivity increased linearly with
decreasing , and reached a maximum value that was an
order of magnitude larger than the single-phase . As
approached the critical pressure, increased dramatically even
though vanished. We attribute this phenomenon to an enhanced
droplet-nucleation rate as the critical point is approached.Comment: 4 gages, 6 figure
Characterization of the complications associated with plasma exchange for thrombotic thrombocytopaenic purpura and related thrombotic microangiopathic anaemias: a single institution experience.
Plasma exchange (PEX) is a life-saving therapeutic procedure in patients with thrombotic thrombocytopaenic purpura (TTP) and other thrombotic microangiopathic anaemias (TMAs). However, it may be associated with significant complications, exacerbating the morbidity and mortality in this patient group
Magnetic Structure of Rapidly Rotating FK Comae-Type Coronae
We present a three-dimensional simulation of the corona of an FK Com-type
rapidly rotating G giant using a magnetohydrodynamic model that was originally
developed for the solar corona in order to capture the more realistic,
non-potential coronal structure. We drive the simulation with surface maps for
the radial magnetic field obtained from a stellar dynamo model of the FK Com
system. This enables us to obtain the coronal structure for different field
topologies representing different periods of time. We find that the corona of
such an FK Com-like star, including the large scale coronal loops, is dominated
by a strong toroidal component of the magnetic field. This is a result of part
of the field being dragged by the radial outflow, while the other part remains
attached to the rapidly rotating stellar surface. This tangling of the magnetic
field,in addition to a reduction in the radial flow component, leads to a
flattening of the gas density profile with distance in the inner part of the
corona. The three-dimensional simulation provides a global view of the coronal
structure. Some aspects of the results, such as the toroidal wrapping of the
magnetic field, should also be applicable to coronae on fast rotators in
general, which our study shows can be considerably different from the
well-studied and well-observed solar corona. Studying the global structure of
such coronae should also lead to a better understanding of their related
stellar processes, such as flares and coronal mass ejections, and in
particular, should lead to an improved understanding of mass and angular
momentum loss from such systems.Comment: Accepted to ApJ, 10 pages, 6 figure
- …
