2,714 research outputs found

    Geometric aspects of the holographic duality

    Get PDF

    Directing transport by polarized radiation in presence of chaos and dissipation

    Full text link
    We study numerically the dynamics of particles on the Galton board of semi-disk scatters in presence of monochromatic radiation and dissipation. It is shown that under certain conditions the radiation leads to appearance of directed transport linked to an underlining strange attractor. The direction of transport can be efficiently changed by radiation polarization. The experimental realization of this effect in asymmetric antidot superlattices is discussed.Comment: revtex, 4 pages, 6 fig

    The geometry of antiferromagnetic spin chains

    Full text link
    We construct spin chains that describe relativistic sigma-models in the continuum limit, using symplectic geometry as a main tool. The target space can be an arbitrary complex flag manifold, and we find universal expressions for the metric and theta-term.Comment: 31 pages, 3 figure

    Large-Scale Structure Formation: from the first non-linear objects to massive galaxy clusters

    Full text link
    The large-scale structure of the Universe formed from initially small perturbations in the cosmic density field, leading to galaxy clusters with up to 10^15 Msun at the present day. Here, we review the formation of structures in the Universe, considering the first primordial galaxies and the most massive galaxy clusters as extreme cases of structure formation where fundamental processes such as gravity, turbulence, cooling and feedback are particularly relevant. The first non-linear objects in the Universe formed in dark matter halos with 10^5-10^8 Msun at redshifts 10-30, leading to the first stars and massive black holes. At later stages, larger scales became non-linear, leading to the formation of galaxy clusters, the most massive objects in the Universe. We describe here their formation via gravitational processes, including the self-similar scaling relations, as well as the observed deviations from such self-similarity and the related non-gravitational physics (cooling, stellar feedback, AGN). While on intermediate cluster scales the self-similar model is in good agreement with the observations, deviations from such self-similarity are apparent in the core regions, where numerical simulations do not reproduce the current observational results. The latter indicates that the interaction of different feedback processes may not be correctly accounted for in current simulations. Both in the most massive clusters of galaxies as well as during the formation of the first objects in the Universe, turbulent structures and shock waves appear to be common, suggesting them to be ubiquitous in the non-linear regime.Comment: Review article. Accepted for publication in Space Science Reviews. It will appear as a contribution to an ISSI boo

    Giant Magnetoresistance Oscillations Induced by Microwave Radiation and a Zero-Resistance State in a 2D Electron System with a Moderate Mobility

    Full text link
    The effect of a microwave field in the frequency range from 54 to 140 GHz\mathrm{GHz} on the magnetotransport in a GaAs quantum well with AlAs/GaAs superlattice barriers and with an electron mobility no higher than 10610^6 cm2/Vs\mathrm{cm^2/Vs} is investigated. In the given two-dimensional system under the effect of microwave radiation, giant resistance oscillations are observed with their positions in magnetic field being determined by the ratio of the radiation frequency to the cyclotron frequency. Earlier, such oscillations had only been observed in GaAs/AlGaAs heterostructures with much higher mobilities. When the samples under study are irradiated with a 140-GHz\mathrm{GHz} microwave field, the resistance corresponding to the main oscillation minimum, which occurs near the cyclotron resonance, appears to be close to zero. The results of the study suggest that a mobility value lower than 10610^6 cm2/Vs\mathrm{cm^2/Vs} does not prevent the formation of zero-resistance states in magnetic field in a two-dimensional system under the effect of microwave radiation.Comment: 4 pages, 2 figur

    Directed electron transport through ballistic quantum dot under microwave radiation

    Full text link
    Rectification of microwave radiation by asymmetric, ballistic quantum dot is observed. The directed transport is studied at different frequency (1-40 GHz) temperatures (0.3K-6K)and magnetic field. Dramatic reduction of the rectification is found in magnetic fields at which the cyclotron (Larmor) radius of the electron orbits at Fermi level is smaller than the size of the quantum dot. It strongly suggests the ballistic nature of the observed nonlinear phenomena. Both symmetric and anti-symmetric with respect to the magnetic field contributions to the directed transport are presented. We have found that the behavior of the symmetric part of the rectified voltage with the magnetic field is different significantly for microwaves with different frequencies. A ballistic model of the directed transport is proposed.Comment: 5 pages, 3 figure

    Visualizing quantum entanglement and the EPR paradox during the photodissociation of a diatomic molecule using two ultrashort laser pulses

    Full text link
    We investigate theoretically the dissociative ionization of a H2+ molecule using two ultrashort laser (pump-probe) pulses. The pump pulse prepares a dissociating nuclear wave packet on an ungerade surface of H2+. Next, an UV (or XUV) probe pulse ionizes this dissociating state at large (R = 20 - 100 bohr) internuclear distance. We calculate the momenta distributions of protons and photoelectrons which show a (two-slit-like) interference structure. A general, simple interference formula is obtained which depends on the electron and protons momenta, as well as on the pump-probe delay on the pulses durations and polarizations. This interference can be interpreted as visualization of an electron state delocalized over the two-centres. This state is an entangled state of a hydrogen atom with a momentum p and a proton with an opposite momentum. -p dissociating on the ungerade surface of H2+. This pump-probe scheme can be used to reveal the nonlocality of the electron which intuitively should be localized on just one of the protons separated by the distance R much larger than the atomic Bohr orbit

    Nonequilibrium stationary states with ratchet effect

    Full text link
    An ensemble of particles in thermal equilibrium at temperature TT, modeled by Nos\`e-Hoover dynamics, moves on a triangular lattice of oriented semi-disk elastic scatterers. Despite the scatterer asymmetry a directed transport is clearly ruled out by the second law of thermodynamics. Introduction of a polarized zero mean monochromatic field creates a directed stationary flow with nontrivial dependence on temperature and field parameters. We give a theoretical estimate of directed current induced by a microwave field in an antidot superlattice in semiconductor heterostructures.Comment: 4 pages, 5 figures (small changes added
    corecore