17,706 research outputs found
Heavy-tailed Distributions In Stochastic Dynamical Models
Heavy-tailed distributions are found throughout many naturally occurring
phenomena. We have reviewed the models of stochastic dynamics that lead to
heavy-tailed distributions (and power law distributions, in particular)
including the multiplicative noise models, the models subjected to the
Degree-Mass-Action principle (the generalized preferential attachment
principle), the intermittent behavior occurring in complex physical systems
near a bifurcation point, queuing systems, and the models of Self-organized
criticality. Heavy-tailed distributions appear in them as the emergent
phenomena sensitive for coupling rules essential for the entire dynamics
Ghetto of Venice: Access to the Target Node and the Random Target Access Time
Random walks defined on undirected graphs assign the absolute scores to all
nodes based on the quality of path they provide for random walkers. In city
space syntax, the notion of segregation acquires a statistical interpretation
with respect to random walks. We analyze the spatial network of Venetian canals
and detect its most segregated part which can be identified with canals
adjacent to the Ghetto of Venice.Comment: 14 pages, 3 figure
The Physical State of the Intergalactic Medium or Can We Measure Y?
We present an argument for a {\it lower limit} to the Compton- parameter
describing spectral distortions of the cosmic microwave background (CMB). The
absence of a detectable Gunn-Peterson signal in the spectra of high redshift
quasars demands a high ionization state of the intergalactic medium (IGM).
Given an ionizing flux at the lower end of the range indicated by the proximity
effect, an IGM representing a significant fraction of the
nucleosynthesis-predicted baryon density must be heated by sources other than
the photon flux to a temperature \go {\rm few} \times 10^5\, K. Such a gas at
the redshift of the highest observed quasars, , will produce a y\go
10^{-6}. This lower limit on rises if the Universe is open, if there is a
cosmological constant, or if one adopts an IGM with a density larger than the
prediction of standard Big Bang nucleosynthesis.Comment: Proceedings of `Unveiling the Cosmic Infrared Background', April
23-25, 1995, Maryland. Self-unpacking uuencoded, compressed tar file with two
figures include
Transport Networks Revisited: Why Dual Graphs?
Deterministic equilibrium flows in transport networks can be investigated by
means of Markov's processes defined on the dual graph representations of the
network. Sustained movement patterns are generated by a subset of automorphisms
of the graph spanning the spatial network of a city naturally interpreted as
random walks. Random walks assign absolute scores to all nodes of a graph and
embed space syntax into Euclidean space.Comment: 12 page
Computer program for solving laminar, transitional, or turbulent compressible boundary-layer equations for two-dimensional and axisymmetric flow
A numerical algorithm and computer program are presented for solving the laminar, transitional, or turbulent two dimensional or axisymmetric compressible boundary-layer equations for perfect-gas flows. The governing equations are solved by an iterative three-point implicit finite-difference procedure. The software, program VGBLP, is a modification of the approach presented in NASA TR R-368 and NASA TM X-2458, respectively. The major modifications are: (1) replacement of the fourth-order Runge-Kutta integration technique with a finite-difference procedure for numerically solving the equations required to initiate the parabolic marching procedure; (2) introduction of the Blottner variable-grid scheme; (3) implementation of an iteration scheme allowing the coupled system of equations to be converged to a specified accuracy level; and (4) inclusion of an iteration scheme for variable-entropy calculations. These modifications to the approach presented in NASA TR R-368 and NASA TM X-2458 yield a software package with high computational efficiency and flexibility. Turbulence-closure options include either two-layer eddy-viscosity or mixing-length models. Eddy conductivity is modeled as a function of eddy viscosity through a static turbulent Prandtl number formulation. Several options are provided for specifying the static turbulent Prandtl number. The transitional boundary layer is treated through a streamwise intermittency function which modifies the turbulence-closure model. This model is based on the probability distribution of turbulent spots and ranges from zero to unity for laminar and turbulent flow, respectively. Several test cases are presented as guides for potential users of the software
- …
