1,791 research outputs found

    Gauge transformations in the Lagrangian and Hamiltonian formalisms of generally covariant theories

    Get PDF
    We study spacetime diffeomorphisms in Hamiltonian and Lagrangian formalisms of generally covariant systems. We show that the gauge group for such a system is characterized by having generators which are projectable under the Legendre map. The gauge group is found to be much larger than the original group of spacetime diffeomorphisms, since its generators must depend on the lapse function and shift vector of the spacetime metric in a given coordinate patch. Our results are generalizations of earlier results by Salisbury and Sundermeyer. They arise in a natural way from using the requirement of equivalence between Lagrangian and Hamiltonian formulations of the system, and they are new in that the symmetries are realized on the full set of phase space variables. The generators are displayed explicitly and are applied to the relativistic string and to general relativity.Comment: 12 pages, no figures; REVTeX; uses multicol,fancyheadings,eqsecnum; to appear in Phys. Rev.

    Particle growing mechanisms in Ag-ZrO2 and Au-ZrO2 granular films obtained by pulsed laser deposition

    Full text link
    Thin films consisting of Ag and Au nanoparticles embedded in amorphous ZrO2 matrix were grown by pulsed laser deposition in a wide range of metal volume concentrations in the dielectric regime (0.08<x(Ag)<0.28 and 0.08<x(Au)<0.52). High resolution transmission electron microscopy (TEM) showed regular distribution of spherical Au and Ag nanoparticles having very sharp interfaces with the amorphous matrix. Mean particle size determined from X-ray diffraction agreed with direct TEM observation. The silver mean diameter increases more abruptly with metal volume content than that corresponding to gold particles prepared under the same conditions. Two mechanisms of particle growing are observed: nucleation and particle coalescence, their relative significance being different in both granular systems, which yields very different values of the percolation threshold (xc(Ag)~0.28 and xc(Au)~0.52).Comment: 6 figure

    Fabrication and structural characterization of highly ordered sub-100-nm planar magnetic nanodot arrays over 1 cm2 coverage area

    Get PDF
    Porous alumina masks are fabricated by anodization of aluminum films grown on both semiconducting and insulating substrates. For these self-assembled alumina masks, pore diameters and periodicities within the ranges of 10–130 and 20–200nm, respectively, can be controlled by varying anodization conditions. 20nm periodicities correspond to pore densities in excess of 1012 per square inch, close to the holy grail of media with 1Tbit∕in.2 density. With these alumina masks, ordered sub-100-nm planar ferromagnetic nanodot arrays covering over 1cm2 were fabricated by electron beam evaporation and subsequent mask lift-off. Moreover, exchange-biased bilayer nanodots were fabricated using argon-ion milling. The average dot diameter and periodicity are tuned between 25 and 130nm and between 45 and 200nm, respectively. Quantitative analyses of scanning electron microscopy (SEM) images of pore and dot arrays show a high degree of hexagonal ordering and narrow size distributions. The dot periodicity obtained from grazi..

    Modelling soil carbon and nitrogen cycles during land use change. A review

    Get PDF
    Forested soils are being increasingly transformed to agricultural fields in response to growing demands for food crop. This modification of the land use is known to result in deterioration of soil properties, in particular its fertility. To reduce the impact of the human activities and mitigate their effects on the soil, it is important to understand the factors responsible for the modification of soil properties. In this paper we reviewed the principal processes affecting soil quality during land use changes, focusing in particular on the effect of soil moisture dynamics on soil carbon (C) and nitrogen (N) cycles. Both physical and biological processes, including degradation of litter and humus, and soil moisture evolution at the diurnal and seasonal time scales were considered, highlighting the impact of hydroclimatic variability on nutrient turnover along with the consequences of land use changes from forest to agricultural soil and vice-versa. In order to identify to what extent different models are suitable for long-term predictions of soil turnover, and to understand whether some simulators are more suited to specific environmental conditions or ecosystems, we enumerated the principal features of the most popular existing models dealing with C and N turnover. Among these models, we considered in detail a mechanistic compartment-based model. To show the capabilities of the model and to demonstrate how it can be used as a predictive tool to forecast the effects of land use changes on C and N dynamics, four different scenarios were studied, intertwining two different climate conditions (with and without seasonality) with two contrasting soils having physical properties that are representative of forest and agricultural soils. The model incorporates synthetic time series of stochastic precipitation, and therefore soil moisture evolution through time. Our main findings in simulating these scenarios are that (1) forest soils have higher concentrations of C and N than agricultural soils as a result of higher litter decomposition; (2) high frequency changes in water saturations under seasonal climate scenarios are commensurate with C and N concentrations in agricultural soils; and (3) due to their different physical properties, forest soils attenuate the seasonal climate-induced frequency changes in water saturation, with accompanying changes in C and N concentrations. The model was shown to be capable of simulating the long term effects of modified physical properties of agricultural soils, being thus a promising tool to predict future consequences of practices affecting sustainable agriculture, such as tillage (leading to erosion), ploughing, harvesting, irrigation and fertilization, leading to C and N turnover changes and in consequence, in terms of agriculture productio

    Hamiltonian Formalism for Space-time Non-commutative Theories

    Get PDF
    Space-time non-commutative theories are non-local in time. We develop the Hamiltonian formalism for non-local field theories in d space-time dimensions by considering auxiliary d+1 dimensional field theories which are local with respect to the evolution time. The Hamiltonian path integral quantization is considered and the Feynman rules in the Lagrangian formalism are derived. The case of non-commutative \phi^3 theory is considered as an example.Comment: 6 pages, A new section is added with other comments and references. To appear in PR

    Molecular mechanisms contributing to TARP regulation of channel conductance and polyamine block of calcium-permeable AMPA receptors.

    Get PDF
    Many properties of fast synaptic transmission in the brain are influenced by transmembrane AMPAR regulatory proteins (TARPs) that modulate the pharmacology and gating of AMPA-type glutamate receptors (AMPARs). Although much is known about TARP influence on AMPAR pharmacology and kinetics through their modulation of the extracellular ligand-binding domain (LBD), less is known about their regulation of the ion channel region. TARP-induced modifications in AMPAR channel behavior include increased single-channel conductance and weakened block of calcium-permeable AMPARs (CP-AMPARs) by endogenous intracellular polyamines. To investigate how TARPs modify ion flux and channel block, we examined the action of γ-2 (stargazin) on GluA1 and GluA4 CP-AMPARs. First, we compared the permeation of organic cations of different sizes. We found that γ-2 increased the permeability of several cations but not the estimated AMPAR pore size, suggesting that TARP-induced relief of polyamine block does not reflect altered pore diameter. Second, to determine whether residues in the TARP intracellular C-tail regulate polyamine block and channel conductance, we examined various γ-2 C-tail mutants. We identified the membrane proximal region of the C terminus as crucial for full TARP-attenuation of polyamine block, whereas complete deletion of the C-tail markedly enhanced the TARP-induced increase in channel conductance; thus, the TARP C-tail influences ion permeation. Third, we identified a site in the pore-lining region of the AMPAR, close to its Q/R site, that is crucial in determining the TARP-induced changes in single-channel conductance. This conserved residue represents a site of TARP action, independent of the AMPAR LBD

    Magnetic transitions in Pr2NiO4 single crystal

    Get PDF
    The magnetic properties of a stoichiometric Pr2NiO4 single crystal have been examined by means of the temperature dependence of the complex ac susceptibility and the isothermal magnetization in fields up to 200 kOe at T=4.2 K. Three separate phases have been identified and their anisotropic character has been analyzed. A collinear antiferromagnetic phase appears first between TN = 325 K and Tc1 = 115 K, where the Pr ions are polarized by an internal magnetic field. At Tc1 a first modification of the magnetic structure occurs in parallel with a structural phase transition (Bmab to P42/ncm). This magnetic transition has a first‐order character and involves both the out‐of‐plane and the in‐plane spin components (magnetic modes gx and gxcyfz, respectively). A second magnetic transition having also a first‐order character is also clearly identified at Tc2 = 90 K which corresponds to a spin reorientation process (gxcyfz to cxgyaz magnetic modes). It should be noted as well that the out‐of‐phase component of χac shows a peak around 30 K which reflects the coexistence of both magnetic configurations in a wide temperature interval. Finally, two field‐induced transitions have been observed at 4.2 K when the field is directed along the c axis. We propose that the high‐field anomaly arises from a metamagnetic transition of the weak ferromagnetic component, similarly to La2CuO4

    Size effects in the magnetic behaviour of TbAl_2 milled alloys

    Full text link
    The study of the magnetic properties depending upon mechanical milling of the ferromagnetic polycrystalline TbAl_2 material is reported. The Rietveld analysis of the X-ray diffraction data reveals a decrease of the grain size down to 14 nm and -0.15 % of variation of the lattice parameter, after 300 hours of milling time. Irreversibility in the zero field cooled - field cooled (ZFC-FC) DC-susceptibility and clear peaks in the AC susceptibility between 5 and 300 K show that the long-range ferromagnetic structure is inhibited in favour of a disordered spin arrangement below 45 K. This glassy behaviour is also deduced from the variation of the irreversibility transition with the field (H^{2/3}) and frequency. The magnetization process of the bulk TbAl_2 is governed by domain wall thermal activation processes. By contrast, in the milled samples, cluster-glass properties arise as a result of cooperative interactions due to the substitutional disorder. The interactions are also influenced by the nanograin structure of the milled alloys, showing a variation of coercivity with the grain size, below the crossover between the multi- and single-domain behaviours.Comment: 23 pages, 11 figures, to appear in J. Phys.: Condens. Ma
    corecore