820 research outputs found

    Geochemistry of the (meta-)mafic rocks from the Gonzalito mining district, northern Patagonia

    Get PDF
    In spite of hosting one of the most important Pb–Ag–Zn mineralizations in Patagonia, the metamorphic history of the rocks of the Mina Gonzalito Complex (MGC; east of the North Patagonian Massif) is still unclear. The complex consists of schists, para- and ortho-derived gneisses, ranging from greenschist to amphibolite facies, and metamafic rocks. Leucogranites and pegmatites were intruded synkinematically. Field, petrological and thermochronological evidence indicates that the MGC experienced an early prograde path and metamorphic peak during the Early Ordovician (ca. 472 Ma), magmatism and localized post-peak deformation and re-equilibrium at lower pressure, followed by uplift during the Late Permian. The MGC is intruded by the calc-alkaline Santa Rosa Diorite (SiO2 = 58.7–60.4 wt%; LaN/YbN = 7.2–10.5) and trachyte dike swarms in the Late Permian- Early Triassic. The mafic intrusives of the MGC form small schistose, massive and banded bodies interlayered within the gneisses and granites and recorded recrystallization of hornblende + plagioclase + quartz + titanite ± clinopyroxene ± biotite ± ilmenite. The metamafic rocks are mostly tholeiitic gabbros having SiO2 (45.4–52.1 wt%), TiO2 (0.62–2.88 wt%), flat REE patterns (LaN/YbN = 0.48–2.76), although some pyroxene-banded varieties show higher ratios. Initial P–T modelling in the NCKFMASHTO system for the metamafic rocks defined P-T conditions between 550 and 730 °C and 1–4 kbar. Our data suggest that the protolith of the metamafic rocks was emplaced in a shallow environment, associated with underplating of mantle-derived magmas slightly modified by crustal contamination. The intrusion of mantle-derived magmas may have been related either to a magmatic arc or to a continental rift environment. The model involving an Ordovician intracontinental back-arc basin is favored herein because it can reasonably explain many other geological features of Early Paleozoic basement rocks from northern Patagonia.Fil: MartĂ­nez Dopico, Carmen Irene. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de GeocronologĂ­a y GeologĂ­a IsotĂłpica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de GeocronologĂ­a y GeologĂ­a IsotĂłpica; ArgentinaFil: Cutts, Kathryn Ann. Universidade Federal de Ouro Preto; BrasilFil: Lopez, Monica Graciela. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de GeocronologĂ­a y GeologĂ­a IsotĂłpica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de GeocronologĂ­a y GeologĂ­a IsotĂłpica; ArgentinaFil: Pugliese, Franco Eduardo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; Argentin

    Geochemistry of the (meta-)mafic rocks from the Gonzalito mining district, northern Patagonia

    Get PDF
    In spite of hosting one of the most important Pb–Ag–Zn mineralizations in Patagonia, the metamorphic history of the rocks of the Mina Gonzalito Complex (MGC; east of the North Patagonian Massif) is still unclear. The complex consists of schists, para- and ortho-derived gneisses, ranging from greenschist to amphibolite facies, and metamafic rocks. Leucogranites and pegmatites were intruded synkinematically. Field, petrological and thermochronological evidence indicates that the MGC experienced an early prograde path and metamorphic peak during the Early Ordovician (ca. 472 Ma), magmatism and localized post-peak deformation and re-equilibrium at lower pressure, followed by uplift during the Late Permian. The MGC is intruded by the calc-alkaline Santa Rosa Diorite (SiO2 = 58.7–60.4 wt%; LaN/YbN = 7.2–10.5) and trachyte dike swarms in the Late Permian- Early Triassic. The mafic intrusives of the MGC form small schistose, massive and banded bodies interlayered within the gneisses and granites and recorded recrystallization of hornblende + plagioclase + quartz + titanite ± clinopyroxene ± biotite ± ilmenite. The metamafic rocks are mostly tholeiitic gabbros having SiO2 (45.4–52.1 wt%), TiO2 (0.62–2.88 wt%), flat REE patterns (LaN/YbN = 0.48–2.76), although some pyroxene-banded varieties show higher ratios. Initial P–T modelling in the NCKFMASHTO system for the metamafic rocks defined P-T conditions between 550 and 730 °C and 1–4 kbar. Our data suggest that the protolith of the metamafic rocks was emplaced in a shallow environment, associated with underplating of mantle-derived magmas slightly modified by crustal contamination. The intrusion of mantle-derived magmas may have been related either to a magmatic arc or to a continental rift environment. The model involving an Ordovician intracontinental back-arc basin is favored herein because it can reasonably explain many other geological features of Early Paleozoic basement rocks from northern Patagonia.Fil: MartĂ­nez Dopico, Carmen Irene. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de GeocronologĂ­a y GeologĂ­a IsotĂłpica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de GeocronologĂ­a y GeologĂ­a IsotĂłpica; ArgentinaFil: Cutts, Kathryn Ann. Universidade Federal de Ouro Preto; BrasilFil: Lopez, Monica Graciela. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de GeocronologĂ­a y GeologĂ­a IsotĂłpica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de GeocronologĂ­a y GeologĂ­a IsotĂłpica; ArgentinaFil: Pugliese, Franco Eduardo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; Argentin

    The Conlara metamorphic complex: Lithology, provenance, metamorphic constraints on the metabasic rocks, and chime monazite dating

    Get PDF
    The Conlara Metamorphic Complex, the easternmost complex of the Sierra de San Luis, is a key unit to understand the relationship between the late Proterozoic-Early Cambrian Pampean and the Upper Cambrian-Middle Ordovician Famatinian orogenies of the Eastern Sierras Pampeanas. The Conlara Metamorphic Complex extends to the east to the foothills of the Sierra de Comechingones and to the west up the RĂ­o GuzmĂĄn shear zone. The main rock types of the CMC are metaclastic and metaigneous rocks that are intruded by Ordovician and Devonian granitoids. The metaclastic units comprise fine to medium-grained metagreywackes and scarce metapelites with lesser amounts of tourmaline schists and tourmalinites whereas the metaigneous rocks encompass basic and granitoids rocks. The former occur as rare amphibolite interlayered within the metasedimentary rocks. The granitic component corresponds to a series of orthogneisses and migmatites (stromatite and diatexite). The CMC is divided in four groups based on the dominant lithological associations: San Martin and La Cocha correspond mainly to schists and some gneisses and Santa Rosa and San Felipe encompass mainly paragneisses, migmatites and orthogneisses. The Conlara Metamoprphic Complex underwent a polyphase metamorphic evolution. The penetrative D2-S2 foliation was affected by upright, generally isoclinal, N-NE trending D3 folds that control the NNE outcrop patterns of the different groups. An earlier, relic S1 is preserved in microlithons. Discontinuous high-T shear zones within the schists and migmatites are related with D4 whereas some fine-grained discontinuous shear bands attest for a D5 deformation phase. Geochemistry of both non-migmatitic metaclastic units and amphibolites suggest that the Conlara Metamorphic Complex represents an arc related basin. Maximun depositional ages indicate a pre- 570 Ma deposition of the sediments. An ample interval between sedimentation and granite emplacement in the already metamorphic complex is indicated by the 497 ± 8 Ma age of El Peñon granite. D1-D2 history took place at 564 ± 21 Ma as indicated by one PbSL age calculated for the M2 garnet of La Cocha Group. D3 is constrained by the pervasively solid-state deformed Early Ordovician granitoids which exhibits folded xenoliths of the D1-D2 deformed metaclastic rocks. Pressure-temperature pseudosections were calculated for one amphibolite using the geologically realistic system MnNCKFMASHTO (MnO–Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3). Peak metamophic conditions (M2) indicate 6 kbar and 620 °C. Late chlorite on the rims and in cracks of garnet, along with titanite rims on ilmenite and matrix plagioclase breaking down to albite suggests that the P-T path moved back down. Monazite analyses yield isochron Th–U–Pb ages ranging from 446 to 418 Ma. The oldest age of 446 ± 5 Ma correspond to a migmatite from the Santa Rosa Group. Monazites in samples from the La Cocha and the San Martin group crystallized at decreasing temperatures, followed by the 418 ± 10 Ma low-Y2O3 monazites in one sample of the la Cocha Group that was also obtained from a migmatite, and would likely mark a later stage of a retrograde metamorphism New CHIME monazite ages presented here likely represent post-peak fluid assisted recrystallization that are similar to amphibole and muscovite cooling ages. Therefore the monazite ages may represent a re-equilibration of the monazite on the cooling path of the basement complex.Fil: LĂłpez de Luchi, MĂłnica G.. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de GeocronologĂ­a y GeologĂ­a IsotĂłpica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de GeocronologĂ­a y GeologĂ­a IsotĂłpica; ArgentinaFil: MartĂ­nez Dopico, Carmen Irene. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de GeocronologĂ­a y GeologĂ­a IsotĂłpica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de GeocronologĂ­a y GeologĂ­a IsotĂłpica; ArgentinaFil: Cutts, Kathryn Ann. Universidade do Estado de Rio do Janeiro; BrasilFil: Schulz, Bernhard. Institute of Mineralogy; AlemaniaFil: Siegesmund, Siegfried. UniversitĂ€t Göttingen; AlemaniaFil: Wemmer, Klaus. UniversitĂ€t Göttingen; AlemaniaFil: Montenegro, Teresita Francisca. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de Geociencias BĂĄsicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias BĂĄsicas, Aplicadas y Ambientales de Buenos Aires; Argentin

    Metamorphism and exhumation of basement gneiss domes in the Quadril?tero Ferr?fero : two stage dome-and-keel evolution?

    Get PDF
    The presence of dome-and-keel provinces in Archean cratons has been connected with the initiation of plate tectonics on Earth as these features are most commonly observed in Archean rocks. The Quadril?tero Ferr?fero in Brazil has been identified as a Paleoproterozoic dome-and-keel province for more than three decades. The prevailing model suggests that it formed during the Rhyacian Transamazonian orogeny, making it unique among dome-and-keel provinces. However, a lack of appropriate lithologies, datable minerals and the metamorphic overprint of later orogenesis has resulted in a cryptic metamorphic record for the formation of this dome-and-keel province. A clinopyroxene-bearing migmatite from the core of the Ba??o dome has peak PeT conditions of 5e7 kbar and 700e750 C and a published age of ca. 2730 Ma based on UePb ages of zircon from leucosomes, suggesting that this age represents the migmatisation event. A fine-grained epidote-albite-titanite assemblage overprints the coarse-grained clinopyroxene and amphibole, giving PeT conditions of 8e9 kbar and 550 C with an associated titanite age of ca. 2050 Ma. A garnet-bearing amphibolite sample also from the core of the dome has peak PeT conditions of 7e8 kbar and 650e700 C, and texturally late titanite from this sample produces an age of ca. 2060 Ma. Three additional samples were collected from the edges of the dome. A garnet-gedrite bearing felsic schist produces peak PeT conditions of 8e9 kbar and 650e700 C on a clockwise PeT evolution. This sample has a UePb zircon age of ca. 2775 Ma, which could date metamorphism or be the age of its volcaniclastic protolith. Texturally unconstrained titanite from the sample gives an age of ca. 2040 Ma. A garnet-bearing amphibolite that occurs as a boudin within the felsic schist gives both zircon and titanite ages of ca. 2050 Ma and has peak PeT conditions of 5e6 kbar and 650e700 C on a near isobaric PeT path. An amphibolite dike, observed to cross-cut the felsic schist produces a zircon UePb age of ca. 2760 Ma. Altogether this data suggests that the samples were metamorphosed in the Archean (ca. 2775e2730 Ma) and again during the Transamazonian event. The most plausible explanation for this data is that dome-and-keel formation occurred in the Archean with migmatisation and high-temperature metamorphism occurring at this time. The Paleoproterozoic event is interpreted as a reactivation of the dome-and-keel formation structures, with Paleoproterozoic keels crosscutting Archean keels and producing metamorphic aureoles. The high radiogenic heat production and the presence of dense sedimentary successions in Archean terranes make dome-and-keel provinces a uniquely Archean feature, but they are susceptible to reworking, resulting in an enigmatic record of formation

    The Archeane-Paleoproterozoic evolution of the Quadril?tero Ferr?fero, Brasil : current models and open questions.

    Get PDF
    The Quadril atero Ferr?fero is a metallogenic district (Au, Fe, Mn) located at the southernmost end of the S~ao Francisco craton in eastern Brazil. In this region, a supracrustal assemblage composed of Archean greenstone and overlying NeoarcheanePaleoproterozoic sedimentary rocks occur in elongated keels bordering domal bodies of Archean gneisses and granites. The tectonomagmatic evolution of the Quadril atero Ferr?fero began in the Paleoarchean with the formation of continental crust between 3500 and 3200 Ma. Although this crust is today poorly preserved, its existence is attested to by the occurrence of detrital zircon crystals with Paleoarchean age in the supracrustal rocks. Most of the crystalline basement, which is composed of banded gneisses intruded by leucogranitic dikes and weakly foliated granites, formed during three major magmatic events: Rio das Velhas I (2920e2850 Ma), Rio das Velhas II (2800e2760 Ma) and Mamona (2760e2680 Ma). The Rio das Velhas II and Mamona events represent a subduction-collision cycle, probably marking the appearance of a modern-style plate tectonic regime in the Quadril atero Ferr?fero. Granitic rocks emplaced during the Rio das Velhas I and II events formed by mixing between a magma generated by partial melting of metamafic rocks with an end member derived by recycling gneissic rocks of older continental crust. After deformation and regional metamorphism at ca. 2770 Ma, a change in the composition of the granitic magmas occurred and large volumes of high-K granitoids were generated. The ca. 6000 m-thick Minas Supergroup tracks the opening and closure of a basin during the NeoarcheanePaleoproterozoic, between 2600 and 2000 Ma. The basal sequence involves continental to marine sediments deposited in a passive margin basin and contain as a marker bed the Lake Superiortype Cau^e Banded Iron Formation. The overlying sediments of the Sabar a Group mark the inversion of the basin during the Rhyacian Minas accretionary orogeny. This orogeny results from the collision between the nuclei of the present-day S~ao Francisco and Congo cratons, generated the fold-and thrust belt structure of the Quadril atero Ferr?fero. Afterwards, the post- orogenic collapse resulted in the deposition of the Itacolomi Group and in the genesis of the dome-and-keel structure. In this paper, we review current knowledge about the 1500 Ma long-lasting tectonomagmatic and structural evolution of the Quadril atero Ferr?fero identifying the most compelling open questions and future challenges

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV

    Get PDF
    A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb(-1) collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on themodel, the combined result excludes a top squarkmass up to 1325 GeV for amassless neutralino, and a neutralinomass up to 700 GeV for a top squarkmass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV

    Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at root s=13 TeV

    Get PDF
    Peer reviewe

    Observation of tW production in the single-lepton channel in pp collisions at root s=13 TeV

    Get PDF
    A measurement of the cross section of the associated production of a single top quark and a W boson in final states with a muon or electron and jets in proton-proton collisions at root s = 13 TeV is presented. The data correspond to an integrated luminosity of 36 fb(-1) collected with the CMS detector at the CERN LHC in 2016. A boosted decision tree is used to separate the tW signal from the dominant t (t) over bar background, whilst the subleading W+jets and multijet backgrounds are constrained using data-based estimates. This result is the first observation of the tW process in final states containing a muon or electron and jets, with a significance exceeding 5 standard deviations. The cross section is determined to be 89 +/- 4 (stat) +/- 12 (syst) pb, consistent with the standard model.Peer reviewe
    • 

    corecore