1,668 research outputs found

    Strong CP breaking and quark-antiquark repulsion in QCD, at finite theta

    Full text link
    This work is devoted to the study of the CP-breaking dynamics in QCD, at finite theta-angle. By working in the semi-classical limit, in which the topology of the vacuum is clustered around instantons and anti-instantons, we show that quantum fluctuations of the theta-vacuum generate an effective flavor-dependent repulsion between matter and anti-matter, inside hadrons. As a consequence, during the tunneling between the degenerate vacua, quarks and anti-quarks in the neutron migrate in opposite directions, giving rise to an oscillating electric dipole moment. We discuss a possible phenomenological implication of this effect.Comment: Final version, accepted for publication on Phys. Rev. D (Rapid Comm.

    Quarks and Anomalies

    Full text link
    A nonperturbative understanding of neutral pion decay was an essential step towards the idea that strong interactions are governed by a color gauge theory for quarks. Some aspects of this work and related problems are still important.Comment: 18 pages, 2 figures. Contribution to "50 Years of Quarks", ed. H. Fritzsch and M. Gell-Mann, World Scientific (to be published

    The Bosonic Structure of Fermions

    Full text link
    We bosonize fermions by identifying their occupation numbers as the binary digits of a Bose occupation number. Unlike other schemes, our method allows infinitely many fermionic oscillators to be constructed from just one bosonic oscillator.Comment: 7pages, ADP-94-13/T15

    Status of Chiral-Scale Perturbation Theory

    Get PDF
    Chiral-scale perturbation theory χ\chiPTσ_\sigma has been proposed as an alternative to chiral SU(3)L×SU(3)RSU(3)_L\times SU(3)_R perturbation theory which explains the ΔI=1/2\Delta I = 1/2 rule for kaon decays. It is based on a low-energy expansion about an infrared fixed point in three-flavor QCD. In χ\chiPTσ_\sigma, quark condensation ⟨qˉq⟩vac≠0\langle\bar q q \rangle_\mathrm{vac} \neq 0 induces nine Nambu-Goldstone bosons: π,K,η\pi, K, \eta and a QCD dilaton σ\sigma which we identify with the f0(500)f_0(500) resonance. Partial conservation of the dilatation and chiral currents constrains low-energy constants which enter the effective Lagrangian of χ\chiPTσ_\sigma. These constraints allow us to obtain new phenomenological bounds on the dilaton decay constant via the coupling of σ/f0\sigma/f_0 to pions, whose value is known precisely from dispersive analyses of ππ\pi\pi scattering. Improved predictions for σ→γγ\sigma \to \gamma \gamma and the σNN\sigma NN coupling are also noted. To test χ\chiPTσ_\sigma for kaon decays, we revive a 1985 proposal for lattice methods to be applied to K→πK \to \pi on-shell.Comment: 10 pages, 1 figure. Presented at the 8th International Workshop on Chiral Dynamics, 29 June 2015 - 03 July 2015, Pisa, Italy. Revision: references and comment adde

    Greater magnocellular saccadic suppression in high versus low autistic tendency suggests a causal path to local perceptual style.

    Get PDF
    Saccadic suppression-the reduction of visual sensitivity during rapid eye movements-has previously been proposed to reflect a specific suppression of the magnocellular visual system, with the initial neural site of that suppression at or prior to afferent visual information reaching striate cortex. Dysfunction in the magnocellular visual pathway has also been associated with perceptual and physiological anomalies in individuals with autism spectrum disorder or high autistic tendency, leading us to question whether saccadic suppression is altered in the broader autism phenotype. Here we show that individuals with high autistic tendency show greater saccadic suppression of low versus high spatial frequency gratings while those with low autistic tendency do not. In addition, those with high but not low autism spectrum quotient (AQ) demonstrated pre-cortical (35-45 ms) evoked potential differences (saccade versus fixation) to a large, low contrast, pseudo-randomly flashing bar. Both AQ groups showed similar differential visual evoked potential effects in later epochs (80-160 ms) at high contrast. Thus, the magnocellular theory of saccadic suppression appears untenable as a general description for the typically developing population. Our results also suggest that the bias towards local perceptual style reported in autism may be due to selective suppression of low spatial frequency information accompanying every saccadic eye movement

    Electromagnetic Contributions to the Schiff Moment

    Full text link
    The Schiff moment, \smij, is a parity and time reversal violating fermion-fermion coupling. The nucleus-electron Schiff moment generically gives the most important contribution to the electric dipole moments of atoms and molecules with zero net intrinsic electronic spin and nuclear spin 12{1 \over 2}. Here, the electromagnetic contribution to the Schiff moment, \emij, is considered. For a nucleon, the leading chirally violating contribution to this interaction is calculable in the chiral limit in terms of the parity and time reversal violating pion-nucleon coupling. For the Schiff moment of heavy nuclei, this chiral contribution is somewhat smaller than the finite size effect discussed previously in the literature.Comment: 7 pages, 1 figure (not included), Tex file, requires phyzzx, preprint SCIPP 93/4

    Strong CP, Up-Quark Mass, and the Randall-Sundrum Microscope

    Full text link
    In the Randall-Sundrum model, setting the ratio of up and down quark masses mu/md<<1m_u/m_d << 1, relevant to the strong CP problem, does not require chiral symmetry or fine-tuning, due to exponential bulk fermion profiles. We point out that such geometric suppression of the mass of a fermion magnifies the masses of its corresponding Kaluza-Klein (KK) states. In this sense, these KK states act as "microscopes" for probing light quark and lepton masses. In simple realizations, this hypothesis can be testable at future colliders, like the LHC, by measuring the spectrum of level-1 KK fermions. The microscope can then provide an experimental test for the vanishing of mum_u in the ultraviolet, independently of non-perturbative determinations, by lattice simulations or other means, at hadronic scales. We also briefly comment on application of our microscope idea to other fermions, such as the electron and neutrinos.Comment: 7 pages. New discussions and references added. Main previous conclusions unchange

    Chiral perturbation theory in a theta vacuum

    Get PDF
    We consider chiral perturbation theory (ChPT) with a non-zero theta term. Due to the CP violating term, the vacuum of chiral fields is shifted to a non-trivial element on the SU(N_f) group manifold. The CP violation also provides mixing of different CP eigenstates, between scalar and pseudoscalar, or vector and axialvector operators. We investigate upto O(theta^2) effects on the mesonic two point correlators of ChPT to the one-loop order. We also address the effects of fixing topology, by using saddle point integration in the Fourier transform with respect to theta.Comment: 31 pages, references added, minor corrections, version published in PR

    The electric dipole form factor of the nucleon

    Full text link
    The electric dipole form factor of the nucleon stemming from the QCD θˉ\bar{\theta} term is calculated in chiral perturbation theory in leading order. To this order, the form factor originates from the pion cloud. Its momentum-dependence is proportional to a non-derivative time-reversal-violating pion-nucleon coupling, and the scale for momentum variation--appearing, in particular, in the radius of the form factor--is the pion mass.Comment: 8 pages, 2 figure
    • …
    corecore