1,951 research outputs found
Mass Density of Individual Cobalt Nanowires
The mass density of nanowires is determined using in-situ resonance frequency
experiments combined with quasi-static nanotensile tests. Our results reveal a
mass density of 7.36 g/cm3 on average which is below the theoretical density of
bulk cobalt. Also the density of electrodeposited cobalt nanowires is found to
decrease with the aspect ratio. The results are discussed in terms of the
measurement accuracy and the microstructure of the nanowires.Comment: 3 Figure
Recommended from our members
Fluorine in the Pahrump outcrop, Gale Crater: Implications for fluid circulation and alteration
The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam on board Curiosity
The Mars Science Laboratory rover Curiosity encountered potassium-rich clastic sedimentary rocks at two sites in Gale Crater, the waypoints Cooperstown and Kimberley. These rocks include several distinct meters thick sedimentary outcrops ranging from fine sandstone to conglomerate, interpreted to record an ancient fluvial or fluvio-deltaic depositional system. From ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) chemical analyses, this suite of sedimentary rocks has an overall mean K2O abundance that is more than 5 times higher than that of the average Martian crust. The combined analysis of ChemCam data with stratigraphic and geographic locations reveals that the mean K2O abundance increases upward through the stratigraphic section. Chemical analyses across each unit can be represented as mixtures of several distinct chemical components, i.e., mineral phases, including K-bearing minerals, mafic silicates, Fe-oxides, and Fe-hydroxide/oxyhydroxides. Possible K-bearing minerals include alkali feldspar (including anorthoclase and sanidine) and K-bearing phyllosilicate such as illite. Mixtures of different source rocks, including a potassium-rich rock located on the rim and walls of Gale Crater, are the likely origin of observed chemical variations within each unit. Physical sorting may have also played a role in the enrichment in K in the Kimberley formation. The occurrence of these potassic sedimentary rocks provides additional evidence for the chemical diversity of the crust exposed at Gale Crater
Apatites in Gale Crater
ChemCam is an active remote sensing instrument suite that has operated successfully on MSL since landing Aug. 6th, 2012. It uses laser pulses to remove dust and to analyze rocks up to 7 m away. Laser-induced breakdown spectroscopy (LIBS) obtains emission spectra of materials ablated from the samples in electronically excited states. The intensities of the emission lines scale with the abundances of the related element. ChemCam is sensitive to most major rock-forming elements as well as to a set of minor and trace elements such as F, Cl, Li, P, Sr, Ba, and Rb. The measured chemical composition can then be used to infer the mineralogical composition of the ablated material. Here, we report a summary of inferred apatite detections along the MSL traverse at Gale Crater. We present the geologic settings of these findings and derive some interpretations about the formation conditions of apatite in time and space
Involvement of angiotensin II in the remodeling induced by a chronic decrease in blood flow in rat mesenteric resistance arteries
Blood flow reduction induces inward remodeling of resistance arteries (RAs). This remodeling occurs in ischemic diseases, diabetes and hypertension. Nonetheless, the effect of flow reduction per se, independent of the effect of pressure or metabolic influences, is not well understood in RA. As angiotensin II is involved in the response to flow in RA, we hypothesized that angiotensin II may also be involved in the remodeling induced by a chronic flow reduction. We analyzed the effect of angiotensin I-converting enzyme inhibition (perindopril) and angiotensin II type 1 receptor blockade (candesartan) on inward remodeling induced by blood flow reduction in vivo in rat mesenteric RAs (low flow (LF) arteries). After 1 week, diameter reduction in LF arteries was associated with reduced endothelium-dependent relaxation and lower levels of eNOS expression. Superoxide production and extracellular signal-regulated kinases 1/2 (ERK1/2 phosphorylation were higher in LF than in normal flow arteries. Nevertheless, the absence of eNOS or superoxide level reduction (tempol or apocynin) did not prevent LF remodeling. Perindopril and candesartan prevented inward remodeling in LF arteries. Contractility to angiotensin II was reduced in LF vessels by perindopril, candesartan and the ERK1/2 blocker PD98059. ERK1/2 activation (ratio phospho-ERK/ERK) was higher in LF arteries, and this activation was prevented by perindopril and candesartan. ERK1/2 inhibition in vivo (U0126) prevented LF-induced diameter reduction. Thus, inward remodeling because of blood flow reduction in mesenteric RA depends on unopposed angiotensin II-induced contraction and ERK1/2 activation, independent of superoxide production. These findings might be of importance in the treatment of vascular disorders
Nonperturbative renormalization in a scalar model within Light-Front Dynamics
Within the covariant formulation of Light-Front Dynamics, in a scalar model
with the interaction Hamiltonian , we calculate
nonperturbatively the renormalized state vector of a scalar "nucleon" in a
truncated Fock space containing the , and sectors. The
model gives a simple example of non-perturbative renormalization which is
carried out numerically. Though the mass renormalization diverges
logarithmically with the cutoff , the Fock components of the "physical"
nucleon are stable when .Comment: 22 pages, 5 figure
Melanoma of the middle ear: initial presentation, Fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography imaging and follow up
Abstract Background: We present a rare case of primary mucosal melanoma of the middle ear imaged with 18F-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography (FDG-PET/CT). Method: Clinical, radiological, intra-operative and histological findings are discussed. Results: An 88-year-old woman presented with intermittent otorrhoea of the left ear for several months. Otoscopy revealed a livid protrusion of the tympanic membrane. Melanoma was not suspected initially, but was established on transmembranous biopsy. Pre-operative 18F-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography revealed a mass lesion in the left tympanic cavity with high fluoro-deoxyglucose uptake, as well as an ipsilateral intraparotid lymph node metastasis. The patient underwent surgical treatment. The diagnosis of melanoma was confirmed histologically. Conclusion: In this rare case, clinical, radiological and surgical findings led to the diagnosis of a primary mucosal melanoma of the middle ea
Adhesion between oppositely-charged polyelectrolytes
The adhesion between a grafted polyelectrolyte layer (brush) and a gel of an oppositely charged polyelectrolyte has been measured as a function of applied pressure, and the interface has been traced using neutron reflectometry. The interface (in aqueous medium at pH 6) between the (polycationic) brush and the (polyanionic) gel has a limited pressure-dependence, with a small amount of deformation of the interface at the brush-gel contact. Brushes with a dry thickness of up to 13 nm exhibit weak adhesion (measured using a mechanical force tester) with an adhesive failure when the gel is detached. Thicker brushes result in the gel exhibiting cohesive failure. Reversing the geometry, whereby a polycationic brush is replaced with a polyanion and the polyanionic gel is replaced with a polycation reveals that the pH-dependence of the adhesion is moderately symmetric about pH 6, but that the maximum force required to separate the polycation gel from the polyanion brush over the range of pH is greater than that for the polycation brush and polyanion gel. The polyanion used is poly(methacrylic acid) (PMAA) and polycations of poly[2-(diethyl amino)ethyl methacrylate] (PDEAEMA) and poly[2-(dimethyl amino)ethyl methacrylate] (PDMAEMA) were used
Orally active antischistosomal early leads identified from the open access malaria box.
BACKGROUND: Worldwide hundreds of millions of schistosomiasis patients rely on treatment with a single drug, praziquantel. Therapeutic limitations and the threat of praziquantel resistance underline the need to discover and develop next generation drugs. METHODOLOGY: We studied the antischistosomal properties of the Medicines for Malaria Venture (MMV) malaria box containing 200 diverse drug-like and 200 probe-like compounds with confirmed in vitro activity against Plasmodium falciparum. Compounds were tested against schistosomula and adult Schistosoma mansoni in vitro. Based on in vitro performance, available pharmacokinetic profiles and toxicity data, selected compounds were investigated in vivo. PRINCIPAL FINDINGS: Promising antischistosomal activity (IC50: 1.4-9.5 µM) was observed for 34 compounds against schistosomula. Three compounds presented IC50 values between 0.8 and 1.3 µM against adult S. mansoni. Two promising early leads were identified, namely a N,N'-diarylurea and a 2,3-dianilinoquinoxaline. Treatment of S. mansoni infected mice with a single oral 400 mg/kg dose of these drugs resulted in significant worm burden reductions of 52.5% and 40.8%, respectively. CONCLUSIONS/SIGNIFICANCE: The two candidates identified by investigating the MMV malaria box are characterized by good pharmacokinetic profiles, low cytotoxic potential and easy chemistry and therefore offer an excellent starting point for antischistosomal drug discovery and development
Gas Accretion and Galactic Chemical Evolution: Theory and Observations
This chapter reviews how galactic inflows influence galaxy metallicity. The
goal is to discuss predictions from theoretical models, but particular emphasis
is placed on the insights that result from using models to interpret
observations. Even as the classical G-dwarf problem endures in the latest round
of observational confirmation, a rich and tantalizing new phenomenology of
relationships between , , SFR, and gas fraction is emerging both in
observations and in theoretical models. A consensus interpretation is emerging
in which star-forming galaxies do most of their growing in a quiescent way that
balances gas inflows and gas processing, and metal dilution with enrichment.
Models that explicitly invoke this idea via equilibrium conditions can be used
to infer inflow rates from observations, while models that do not assume
equilibrium growth tend to recover it self-consistently. Mergers are an overall
subdominant mechanism for delivering fresh gas to galaxies, but they trigger
radial flows of previously-accreted gas that flatten radial gas-phase
metallicity gradients and temporarily suppress central metallicities. Radial
gradients are generically expected to be steep at early times and then
flattened by mergers and enriched inflows of recycled gas at late times.
However, further theoretical work is required in order to understand how to
interpret observations. Likewise, more observational work is needed in order to
understand how metallicity gradients evolve to high redshifts.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics
and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by
Springer. 29 pages, 2 figure
- …
