11 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Chase-and-run between adjacent cell populations promotes directional collective migration

    Get PDF
    Collective cell migration in morphogenesis and cancer progression often involves the coordination of multiple cell types. How reciprocal interactions between adjacent cell populations lead to new emergent behaviours remains unknown. Here we studied the interaction between neural crest (NC) cells, a highly migratory cell population, and placodal cells, an epithelial tissue that contributes to sensory organs. We found that NC cells chase placodal cells by chemotaxis, and placodal cells run when contacted by NC. Chemotaxis to Sdf1 underlies the chase, and repulsion involving PCP and N-cadherin signalling is responsible for the run. This chase-and-run requires the generation of asymmetric forces, which depend on local inhibition of focal adhesions. The cell interactions described here are essential for correct NC migration and for segregation of placodes in vivo and are likely to represent a general mechanism of coordinated migration

    Religion and violence, Religion and Peace: Essays from the Center for Christian-Jewish Understanding Conference in Auschwitz, Poland, May 1998

    No full text
    Based on papers presented at a 1998 conference held in Auschwitz and sponsored by the Center for Christian-Jewish Understanding at Sacred Heart University, this volume focuses on the role that religion plays in cultivating peace or promoting violence. Contents: Preface / Joseph H. Ehrenkranz -- Opening remarks / Anthony J. Cernera, Franciszek Cardinal Macharski, Archbishop Jeremiasz -- Part I. The problem of violence -- The problem of religion, violence, and peace: an uneasy trilogy / David L. Coppola -- Blood and hope / Samuel Pisar -- Anger and courage: a reply to Samuel Pisar / Elisabeth Maxwell -- Fundamentalism as a precursor to violence / Martin E. Marty -- Part II. The possibility of peace in Judaism, Christianity, and Islam -- The roots of peace in the Torah / Rene-Samuel Sirat -- The roots of peace in the New Testament / Cahal Brendan Cardinal Daly -- The roots of peace in the Qur\u27an / Amira Shamma Abdin -- Part III. Bridges to greater understanding -- The role of religion in the pursuit of peace / David Rosen -- Pastoral reflections / William Cardinal Keeler -- The great jubilee: a time of remembrance / Georges Cottier.https://digitalcommons.sacredheart.edu/shupress_bks/1007/thumbnail.jp

    Mitochondria at the neuronal presynapse in health and disease

    No full text
    Synapses enable neurons to communicate with each other and are therefore a prerequisite for normal brain function. Presynaptically, this communication requires energy and generates large fluctuations in calcium concentrations. Mitochondria are optimized for supplying energy and buffering calcium, and they are actively recruited to presynapses. However, not all presynapses contain mitochondria; thus, how might synapses with and without mitochondria differ? Mitochondria are also increasingly recognized to serve additional functions at the presynapse. Here, we discuss the importance of presynaptic mitochondria in maintaining neuronal homeostasis and how dysfunctional presynaptic mitochondria might contribute to the development of disease

    Synaptic, transcriptional and chromatin genes disrupted in autism.

    No full text

    Genomic reconstruction of the SARS-CoV-2 epidemic in England

    Get PDF
    AbstractThe evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus leads to new variants that warrant timely epidemiological characterization. Here we use the dense genomic surveillance data generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of subepidemics that peaked in early autumn 2020, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage. The Alpha variant grew when other lineages declined during the second national lockdown and regionally tiered restrictions between November and December 2020. A third more stringent national lockdown suppressed the Alpha variant and eliminated nearly all other lineages in early 2021. Yet a series of variants (most of which contained the spike E484K mutation) defied these trends and persisted at moderately increasing proportions. However, by accounting for sustained introductions, we found that the transmissibility of these variants is unlikely to have exceeded the transmissibility of the Alpha variant. Finally, B.1.617.2/Delta was repeatedly introduced in England and grew rapidly in early summer 2021, constituting approximately 98% of sampled SARS-CoV-2 genomes on 26 June 2021.</jats:p

    Expanded encyclopaedias of DNA elements in the human and mouse genomes

    No full text
    AbstractThe human and mouse genomes contain instructions that specify RNAs and proteins and govern the timing, magnitude, and cellular context of their production. To better delineate these elements, phase III of the Encyclopedia of DNA Elements (ENCODE) Project has expanded analysis of the cell and tissue repertoires of RNA transcription, chromatin structure and modification, DNA methylation, chromatin looping, and occupancy by transcription factors and RNA-binding proteins. Here we summarize these efforts, which have produced 5,992 new experimental datasets, including systematic determinations across mouse fetal development. All data are available through the ENCODE data portal (https://www.encodeproject.org), including phase II ENCODE1 and Roadmap Epigenomics2 data. We have developed a registry of 926,535 human and 339,815 mouse candidate cis-regulatory elements, covering 7.9 and 3.4% of their respective genomes, by integrating selected datatypes associated with gene regulation, and constructed a web-based server (SCREEN; http://screen.encodeproject.org) to provide flexible, user-defined access to this resource. Collectively, the ENCODE data and registry provide an expansive resource for the scientific community to build a better understanding of the organization and function of the human and mouse genomes.11Nsciescopu

    Perspectives on ENCODE

    No full text
    The Encylopedia of DNA Elements (ENCODE) Project launched in 2003 with the long-term goal of developing a comprehensive map of functional elements in the human genome. These included genes, biochemical regions associated with gene regulation (for example, transcription factor binding sites, open chromatin, and histone marks) and transcript isoforms. The marks serve as sites for candidate cis-regulatory elements (cCREs) that may serve functional roles in regulating gene expression1. The project has been extended to model organisms, particularly the mouse. In the third phase of ENCODE, nearly a million and more than 300,000 cCRE annotations have been generated for human and mouse, respectively, and these have provided a valuable resource for the scientific community.11Nsciescopu
    corecore