57 research outputs found

    Advancing the argument for validity of the Alberta Context Tool with healthcare aides in residential long-term care

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Organizational context has the potential to influence the use of new knowledge. However, despite advances in understanding the theoretical base of organizational context, its measurement has not been adequately addressed, limiting our ability to quantify and assess context in healthcare settings and thus, advance development of contextual interventions to improve patient care. We developed the Alberta Context Tool (the ACT) to address this concern. It consists of 58 items representing 10 modifiable contextual concepts. We reported the initial validation of the ACT in 2009. This paper presents the second stage of the psychometric validation of the ACT.</p> <p>Methods</p> <p>We used the <it>Standards for Educational and Psychological Testing </it>to frame our validity assessment. Data from 645 English speaking healthcare aides from 25 urban residential long-term care facilities (nursing homes) in the three Canadian Prairie Provinces were used for this stage of validation. In this stage we focused on: (1) advanced aspects of internal structure (e.g., confirmatory factor analysis) and (2) relations with other variables validity evidence. To assess reliability and validity of scores obtained using the ACT we conducted: Cronbach's alpha, confirmatory factor analysis, analysis of variance, and tests of association. We also assessed the performance of the ACT when individual responses were aggregated to the care unit level, because the instrument was developed to obtain unit-level scores of context.</p> <p>Results</p> <p>Item-total correlations exceeded acceptable standards (> 0.3) for the majority of items (51 of 58). We ran three confirmatory factor models. Model 1 (all ACT items) displayed unacceptable fit overall and for five specific items (1 item on <it>adequate space for resident care </it>in the Organizational Slack-Space ACT concept and 4 items on use of electronic resources in the Structural and Electronic Resources ACT concept). This prompted specification of two additional models. Model 2 used the 7 scaled ACT concepts while Model 3 used the 3 count-based ACT concepts. Both models displayed substantially improved fit in comparison to Model 1. Cronbach's alpha for the 10 ACT concepts ranged from 0.37 to 0.92 with 2 concepts performing below the commonly accepted standard of 0.70. Bivariate associations between the ACT concepts and instrumental research utilization levels (which the ACT should predict) were statistically significant at the 5% level for 8 of the 10 ACT concepts. The majority (8/10) of the ACT concepts also showed a statistically significant trend of increasing mean scores when arrayed across the lowest to the highest levels of instrumental research use.</p> <p>Conclusions</p> <p>The validation process in this study demonstrated additional empirical support for construct validity of the ACT, when completed by healthcare aides in nursing homes. The overall pattern of the data was consistent with the structure hypothesized in the development of the ACT and supports the ACT as an appropriate measure for assessing organizational context in nursing homes. Caution should be applied in using the one space and four electronic resource items that displayed misfit in this study with healthcare aides until further assessments are made.</p

    Validation of the conceptual research utilization scale: an application of the standards for educational and psychological testing in healthcare

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a lack of acceptable, reliable, and valid survey instruments to measure conceptual research utilization (CRU). In this study, we investigated the psychometric properties of a newly developed scale (the CRU Scale).</p> <p>Methods</p> <p>We used the <it>Standards for Educational and Psychological Testing </it>as a validation framework to assess four sources of validity evidence: content, response processes, internal structure, and relations to other variables. A panel of nine international research utilization experts performed a formal content validity assessment. To determine response process validity, we conducted a series of one-on-one scale administration sessions with 10 healthcare aides. Internal structure and relations to other variables validity was examined using CRU Scale response data from a sample of 707 healthcare aides working in 30 urban Canadian nursing homes. Principal components analysis and confirmatory factor analyses were conducted to determine internal structure. Relations to other variables were examined using: (1) bivariate correlations; (2) change in mean values of CRU with increasing levels of other kinds of research utilization; and (3) multivariate linear regression.</p> <p>Results</p> <p>Content validity index scores for the five items ranged from 0.55 to 1.00. The principal components analysis predicted a 5-item 1-factor model. This was inconsistent with the findings from the confirmatory factor analysis, which showed best fit for a 4-item 1-factor model. Bivariate associations between CRU and other kinds of research utilization were statistically significant (p < 0.01) for the latent CRU scale score and all five CRU items. The CRU scale score was also shown to be significant predictor of overall research utilization in multivariate linear regression.</p> <p>Conclusions</p> <p>The CRU scale showed acceptable initial psychometric properties with respect to responses from healthcare aides in nursing homes. Based on our validity, reliability, and acceptability analyses, we recommend using a reduced (four-item) version of the CRU scale to yield sound assessments of CRU by healthcare aides. Refinement to the wording of one item is also needed. Planned future research will include: latent scale scoring, identification of variables that predict and are outcomes to conceptual research use, and longitudinal work to determine CRU Scale sensitivity to change.</p

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Conformational Sampling of the Botulinum Neurotoxin Serotype a Light Chain: Implications for Inhibitor Binding

    Get PDF
    Botulinum neurotoxins (BoNTs) are the most potent of the known biological toxins, and consequently are listed as category A biowarfare agents. Currently, the only treatments against BoNTs include preventative antitoxins and long-term supportive care. Consequently, there is an urgent need for therapeutics to counter these enzymes––post exposure. In a previous study, we identified a number of small, nonpeptidic lead inhibitors of BoNT serotype A light chain (BoNT/A LC) metalloprotease activity, and we identified a common pharmacophore for these molecules. In this study, we have focused on how the dynamic movement of amino acid residues in and surrounding the substrate binding cleft of the BoNT/A LC might affect inhibitor binding modes. The X-ray crystal structures of two BoNT/A LCs (PDB refcodes = 3BTA and 1E1H) were examined. Results from these analyses indicate that the core structural features of the examined BoNT/A LCs, including a-helices and b-sheets, remained relatively unchanged during 1ns dynamics trajectories. However, conformational flexibility was observed in surface loops bordering the substrate binding clefts in both examined structures. Our analyses indicate that these loops may possess the ability to decrease the solvent accessibility of the substrate binding cleft, while at the same time creating new residue contacts for the inhibitors. Loop movements and conformational/ positional analyses of residues within the substrate binding cleft are discussed with respect to BoNT/A LC inhibitor binding and our common pharmacophore for inhibition. The results from these studies may aid in the future identification/development of more potent small molecule inhibitors that take advantage of new binding contacts in the BoNT/A LC

    Novel Small Molecule Inhibitors of Botulinum Neurotoxin a Metalloprotease Activity

    Get PDF
    Botulinum neurotoxins (BoNTs) are among the most lethal biological substances to have been weaponized and are listed as biodefense category A agents. Currently, no small molecule (non-peptidic) therapeutics exist to counter this threat; hence, identifying and developing compounds that inhibit BoNTs is a high priority. In the present study, a high-throughput assay was used to identify small molecules that inhibit the metalloprotease activity of BoNT serotype A light chain (BoNT/A LC). All inhibitors were further verified using a HPLC-based assay. Conformational analyses of these compounds, in conjunction with molecular docking studies, were used to predict structural features that contribute to inhibitor binding and potency. Based on these results, a common pharmacophore for BoNT/A LC inhibitors is proposed. This is the first study to report small molecules (non-peptidics) that inhibit BoNT/A LC metalloprotease activity in the low lM range
    corecore