12,361 research outputs found
Tobacco industry influence on European Union policymaking:implications for Article 5.3 of the Framework Convention on Tobacco Control.
Obscuration model of Variability in AGN
There are strong suggestions that the disk-like accretion flow onto massive
black hole in AGN is disrupted in its innermost part (10-100 Rg), possibly due
to the radiation pressure instability. It may form a hot optically thin quasi
spherical (ADAF) flow surrounded by or containing denser clouds due to the
disruption of the disk. Such clouds might be optically thick, with a Thompson
depth of order of 10 or more. Within the frame of this cloud scenario
(Collin-Souffrin et al. 1996, Czerny & Dumont 1998), obscuration events are
expected and the effect would be seen as a variability. We consider expected
random variability due to statistical dispersion in location of clouds along
the line of sight for a constant covering factor. We discuss a simple
analytical toy model which provides us with the estimates of the mean spectral
properties and variability amplitude of AGN, and we support them with radiative
transfer computations done with the use of TITAN code of Dumont, Abrassart &
Collin (1999) and NOAR code of Abrassart (1999).Comment: to appear in Proc. of 5th Compton Symposium on Gamma-Ray Astronomy
and Astrophysic
Concordant HIV Infection and Visceral Leishmaniasis in Ethiopia: The Influence of Antiretroviral Treatment and Other Factors on Outcome
A VLBA Search for a Stimulated Recombination Line from the Accretion Region in NGC1275
The radio source 3C84, in NGC1275, has a two sided structure on parsec
scales. The northern feature, presumed to be associated with a jet moving away
from the Earth, shows strong evidence for free-free absorption. The ionized gas
responsible for that absorption would be a source of detectable stimulated
recombination line emission for a wide range of physical conditions. The VLBA
has been used to search for the H65 hydrogen recombination line. The
line is only expected to be seen against the northern feature which contains a
small fraction of the total radio flux density. This spatial discrimination
significantly aids the search for a weak line. No line was seen, with upper
limits of roughly 15% of the continuum over a velocity range of 1486 km/s with
resolutions up to 6.6 km/s. In the absence of a strong radiation field, this
would imply that the free-free absorbing gas has a wide velocity width, is
moving rapidly relative to the systemic velocity, or is concentrated in a thin,
high density structure. All of these possibilities are reasonably likely close
to an AGN. However, in the intense radiation environment of the AGN, even
considering only the radiation we actually observe passing through the
free-free absorbing gas, the non-detection is probably assured by a combination
of saturation and radiation damping.Comment: 14 pages with 4 postscript figures. Accepted for publication in the
April 2003 Astronomical Journa
Investigating the noise residuals around the gravitational wave event GW150914
We use the Pearson cross-correlation statistic proposed by Liu and Jackson,
and employed by Creswell et al., to look for statistically significant
correlations between the LIGO Hanford and Livingston detectors at the time of
the binary black hole merger GW150914. We compute this statistic for the
calibrated strain data released by LIGO, using both the residuals provided by
LIGO and using our own subtraction of a maximum-likelihood waveform that is
constructed to model binary black hole mergers in general relativity. To assign
a significance to the values obtained, we calculate the cross-correlation of
both simulated Gaussian noise and data from the LIGO detectors at times during
which no detection of gravitational waves has been claimed. We find that after
subtracting the maximum likelihood waveform there are no statistically
significant correlations between the residuals of the two detectors at the time
of GW150914.Comment: 14 pages, 7 figures. Minor text and figure changes in final v3.
Notebooks for generating the results are available at
https://github.com/gwastro/gw150914_investigatio
Center of mass rotation and vortices in an attractive Bose gas
The rotational properties of an attractively interacting Bose gas are studied
using analytical and numerical methods. We study perturbatively the ground
state phase space for weak interactions, and find that in an anharmonic trap
the rotational ground states are vortex or center of mass rotational states;
the crossover line separating these two phases is calculated. We further show
that the Gross-Pitaevskii equation is a valid description of such a gas in the
rotating frame and calculate numerically the phase space structure using this
equation. It is found that the transition between vortex and center of mass
rotation is gradual; furthermore the perturbative approach is valid only in an
exceedingly small portion of phase space. We also present an intuitive picture
of the physics involved in terms of correlated successive measurements for the
center of mass state.Comment: version2, 17 pages, 5 figures (3 eps and 2 jpg
Blueprint for a high-performance biomaterial: full-length spider dragline silk genes.
Spider dragline (major ampullate) silk outperforms virtually all other natural and manmade materials in terms of tensile strength and toughness. For this reason, the mass-production of artificial spider silks through transgenic technologies has been a major goal of biomimetics research. Although all known arthropod silk proteins are extremely large (>200 kiloDaltons), recombinant spider silks have been designed from short and incomplete cDNAs, the only available sequences. Here we describe the first full-length spider silk gene sequences and their flanking regions. These genes encode the MaSp1 and MaSp2 proteins that compose the black widow's high-performance dragline silk. Each gene includes a single enormous exon (>9000 base pairs) that translates into a highly repetitive polypeptide. Patterns of variation among sequence repeats at the amino acid and nucleotide levels indicate that the interaction of selection, intergenic recombination, and intragenic recombination governs the evolution of these highly unusual, modular proteins. Phylogenetic footprinting revealed putative regulatory elements in non-coding flanking sequences. Conservation of both upstream and downstream flanking sequences was especially striking between the two paralogous black widow major ampullate silk genes. Because these genes are co-expressed within the same silk gland, there may have been selection for similarity in regulatory regions. Our new data provide complete templates for synthesis of recombinant silk proteins that significantly improve the degree to which artificial silks mimic natural spider dragline fibers
The structure and radiation spectra of illuminated accretion discs in AGN. I. Moderate illumination
We present detailed computations of the vertical structure of an accretion
disc illuminated by hard X-ray radiation with the code {\sc titan-noar}
suitable for Compton thick media. The energy generated via accretion is
dissipated partially in the cold disc as well as in the X-ray source. We study
the differences between the case where the X-ray source is in the form of a
lamp post above the accretion disc and the case of a heavy corona. We consider
radiative heating via Comptonization together with heating via photo-absorption
on numerous heavy elements as carbon, oxygen, silicon, iron. The transfer in
lines is precisely calculated. A better description of the heating/cooling
through the inclusion of line transfer, a correct description of the
temperature in the deeper layers, a correct description of the entire disc
vertical structure, as well as the study of the possible coronal pressure
effect, constitute an improvement in comparison to previous works. We show that
exact calculations of hydrostatic equilibrium and determination of the disc
thickness has a crucial impact on the optical depth of the hot illuminated
zone. We assume a moderate illumination where the viscous flux equals the X-ray
radiation flux. A highly ionized skin is created in the lamp post model, with
the outgoing spectrum containing many emission lines and ionization edges in
emission or absorption in the soft X-ray domain, as well as an iron line at
keV consisting of a blend of low ionization line from the deepest
layers and hydrogen and helium like resonance line from the upper layers, and
almost no absorption edge, contrary to the case of a slab of constant density.A
full heavy corona completely suppresses the highly ionized zone on the top of
the accretion disc and in such case the spectrum is featureless.Comment: 16 pages, 20 figures, corrected two sentences, accepted by MNRA
- …
