282 research outputs found

    Human Genomics of COVID-19 Pneumonia: Contributions of Rare and Common Variants.

    Get PDF
    SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection is silent or benign in most infected individuals, but causes hypoxemic COVID-19 pneumonia in about 10% of cases. We review studies of the human genetics of life-threatening COVID-19 pneumonia, focusing on both rare and common variants. Large-scale genome-wide association studies have identified more than 20 common loci robustly associated with COVID-19 pneumonia with modest effect sizes, some implicating genes expressed in the lungs or leukocytes. The most robust association, on chromosome 3, concerns a haplotype inherited from Neanderthals. Sequencing studies focusing on rare variants with a strong effect have been particularly successful, identifying inborn errors of type I interferon (IFN) immunity in 1-5% of unvaccinated patients with critical pneumonia, and their autoimmune phenocopy, autoantibodies against type I IFN, in another 15-20% of cases. Our growing understanding of the impact of human genetic variation on immunity to SARS-CoV-2 is enabling health systems to improve protection for individuals and populations

    Human genetic and immunological determinants of critical COVID-19 pneumonia

    Get PDF
    SARS-CoV-2 infection is benign in most individuals but, in around 10% of cases, it triggers hypoxaemic COVID-19 pneumonia, which leads to critical illness in around 3% of cases. The ensuing risk of death (approximately 1% across age and gender) doubles every five years from childhood onwards and is around 1.5 times greater in men than in women. Here we review the molecular and cellular determinants of critical COVID-19 pneumonia. Inborn errors of type I interferons (IFNs), including autosomal TLR3 and X-chromosome-linked TLR7 deficiencies, are found in around 1-5% of patients with critical pneumonia under 60 years old, and a lower proportion in older patients. Pre-existing auto-antibodies neutralizing IFNα, IFNβ and/or IFNω, which are more common in men than in women, are found in approximately 15-20% of patients with critical pneumonia over 70 years old, and a lower proportion in younger patients. Thus, at least 15% of cases of critical COVID-19 pneumonia can be explained. The TLR3- and TLR7-dependent production of type I IFNs by respiratory epithelial cells and plasmacytoid dendritic cells, respectively, is essential for host defence against SARS-CoV-2. In ways that can depend on age and sex, insufficient type I IFN immunity in the respiratory tract during the first few days of infection may account for the spread of the virus, leading to pulmonary and systemic inflammation

    A common TMPRSS2 variant has a protective effect against severe COVID-19

    Get PDF
    Background : The human protein transmembrane protease serine type 2 (TMPRSS2) plays a key role in SARS-CoV-2 infection, as it is required to activate the virus’ spike protein, facilitating entry into target cells. We hypothesized that naturally-occurring TMPRSS2 human genetic variants affecting the structure and function of the TMPRSS2 protein may modulate the severity of SARS-CoV-2 infection. Methods : We focused on the only common TMPRSS2 non-synonymous variant predicted to be damaging (rs12329760 C>T, p.V160M), which has a minor allele frequency ranging from from 0.14 in Ashkenazi Jewish to 0.38 in East Asians. We analysed the association between the rs12329760 and COVID-19 severity in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units recruited as part of the GenOMICC (Genetics Of Mortality In Critical Care) study. Logistic regression analyses were adjusted for sex, age and deprivation index. For in vitro studies, HEK293 cells were co-transfected with ACE2 and either TMPRSS2 wild type or mutant (TMPRSS2V160M). A SARS-CoV-2 pseudovirus entry assay was used to investigate the ability of TMPRSS2V160M to promote viral entry. Results : We show that the T allele of rs12329760 is associated with a reduced likelihood of developing severe COVID-19 (OR 0.87, 95%CI:0.79-0.97, p=0.01). This association was stronger in homozygous individuals when compared to the general population (OR 0.65, 95%CI:0.50-0.84, p=1.3 × 10−3). We demonstrate in vitro that this variant, which causes the amino acid substitution valine to methionine, affects the catalytic activity of TMPRSS2 and is less able to support SARS-CoV-2 spike-mediated entry into cells. Conclusion : TMPRSS2 rs12329760 is a common variant associated with a significantly decreased risk of severe COVID-19. Further studies are needed to assess the expression of TMPRSS2 across different age groups. Moreover, our results identify TMPRSS2 as a promising drug target, with a potential role for camostat mesilate, a drug approved for the treatment of chronic pancreatitis and postoperative reflux esophagitis, in the treatment of COVID-19. Clinical trials are needed to confirm this

    Nonsyndromic cleft palate:An association study at GWAS candidate loci in a multiethnic sample

    Get PDF
    Background: Nonsyndromic cleft palate only (nsCPO) is a common and multifactorial form of orofacial clefting. In contrast to successes achieved for the other common form of orofacial clefting, that is, nonsyndromic cleft lip with/without cleft palate (nsCL/P), genome wide association studies (GWAS) of nsCPO have identified only one genome wide significant locus. Aim of the present study was to investigate whether common variants contribute to nsCPO and, if so, to identify novel risk loci. Methods: We genotyped 33 SNPs at 27 candidate loci from 2 previously published nsCPO GWAS in an independent multiethnic sample. It included: (i) a family-based sample of European ancestry (n=212); and (ii) two case/control samples of Central European (n=94/339) and Arabian ancestry (n=38/231), respectively. A separate association analysis was performed for each genotyped dataset, and meta-analyses were performed. Results: After association analysis and meta-analyses, none of the 33 SNPs showed genome-wide significance. Two variants showed nominally significant association in the imputed GWAS dataset and exhibited a further decrease in p-value in a European and an overall meta-analysis including imputed GWAS data, respectively (rs395572: PMetaEU=3.16 Ã\u97 10-4; rs6809420: PMetaAll=2.80 Ã\u97 10-4). Conclusion: Our findings suggest that there is a limited contribution of common variants to nsCPO. However, the individual effect sizes might be too small for detection of further associations in the present sample sizes. Rare variants may play a more substantial role in nsCPO than in nsCL/P, for which GWAS of smaller sample sizes have identified genome-wide significant loci. Whole-exome/genome sequencing studies of nsCPO are now warranted

    More rapid blood interferon α2 decline in fatal versus surviving COVID-19 patients

    Get PDF
    BackgroundThe clinical outcome of COVID-19 pneumonia is highly variable. Few biological predictive factors have been identified. Genetic and immunological studies suggest that type 1 interferons (IFN) are essential to control SARS-CoV-2 infection.ObjectiveTo study the link between change in blood IFN-α2 level and plasma SARS-Cov2 viral load over time and subsequent death in patients with severe and critical COVID-19.MethodsOne hundred and forty patients from the CORIMUNO-19 cohort hospitalized with severe or critical COVID-19 pneumonia, all requiring oxygen or ventilation, were prospectively studied. Blood IFN-α2 was evaluated using the Single Molecule Array technology. Anti-IFN-α2 auto-Abs were determined with a reporter luciferase activity. Plasma SARS-Cov2 viral load was measured using droplet digital PCR targeting the Nucleocapsid gene of the SARS-CoV-2 positive-strand RNA genome.ResultsAlthough the percentage of plasmacytoid dendritic cells was low, the blood IFN-α2 level was higher in patients than in healthy controls and was correlated to SARS-CoV-2 plasma viral load at entry. Neutralizing anti-IFN-α2 auto-antibodies were detected in 5% of patients, associated with a lower baseline level of blood IFN-α2. A longitudinal analysis found that a more rapid decline of blood IFN-α2 was observed in fatal versus surviving patients: mortality HR=3.15 (95% CI 1.14–8.66) in rapid versus slow decliners. Likewise, a high level of plasma SARS-CoV-2 RNA was associated with death risk in patients with severe COVID-19.ConclusionThese findings could suggest an interest in evaluating type 1 IFN treatment in patients with severe COVID-19 and type 1 IFN decline, eventually combined with anti-inflammatory drugs.Clinical trial registrationhttps://clinicaltrials.gov, identifiers NCT04324073, NCT04331808, NCT04341584

    Mutations in STAT3 and IL12RB1 impair the development of human IL-17–producing T cells

    Get PDF
    The cytokines controlling the development of human interleukin (IL) 17–producing T helper cells in vitro have been difficult to identify. We addressed the question of the development of human IL-17–producing T helper cells in vivo by quantifying the production and secretion of IL-17 by fresh T cells ex vivo, and by T cell blasts expanded in vitro from patients with particular genetic traits affecting transforming growth factor (TGF) β, IL-1, IL-6, or IL-23 responses. Activating mutations in TGFB1, TGFBR1, and TGFBR2 (Camurati-Engelmann disease and Marfan-like syndromes) and loss-of-function mutations in IRAK4 and MYD88 (Mendelian predisposition to pyogenic bacterial infections) had no detectable impact. In contrast, dominant-negative mutations in STAT3 (autosomal-dominant hyperimmunoglobulin E syndrome) and, to a lesser extent, null mutations in IL12B and IL12RB1 (Mendelian susceptibility to mycobacterial diseases) impaired the development of IL-17–producing T cells. These data suggest that IL-12Rβ1– and STAT-3–dependent signals play a key role in the differentiation and/or expansion of human IL-17–producing T cell populations in vivo

    Human MCTS1-dependent translation of JAK2 is essential for IFN-γ immunity to mycobacteria.

    Get PDF
    Human inherited disorders of interferon-gamma (IFN-γ) immunity underlie severe mycobacterial diseases. We report X-linked recessive MCTS1 deficiency in men with mycobacterial disease from kindreds of different ancestries (from China, Finland, Iran, and Saudi Arabia). Complete deficiency of this translation re-initiation factor impairs the translation of a subset of proteins, including the kinase JAK2 in all cell types tested, including T lymphocytes and phagocytes. JAK2 expression is sufficiently low to impair cellular responses to interleukin-23 (IL-23) and partially IL-12, but not other JAK2-dependent cytokines. Defective responses to IL-23 preferentially impair the production of IFN-γ by innate-like adaptive mucosal-associated invariant T cells (MAIT) and γδ T lymphocytes upon mycobacterial challenge. Surprisingly, the lack of MCTS1-dependent translation re-initiation and ribosome recycling seems to be otherwise physiologically redundant in these patients. These findings suggest that X-linked recessive human MCTS1 deficiency underlies isolated mycobacterial disease by impairing JAK2 translation in innate-like adaptive T lymphocytes, thereby impairing the IL-23-dependent induction of IFN-γ
    corecore