18 research outputs found

    Seismic Response of RC Beam-Column Joints Strengthened with FRP ROPES, Using 3D Finite Element: Verification with Real Scale Tests

    No full text
    A 3D-finite element analysis within the numerical program ABAQUS is adopted in order to simulate the seismic behavior of reinforced concrete beam-column joints and beam-column joints strengthened with CFRP ropes. The suitability of the adopted approach is investigated herein. For this purpose, experimental and numerical cyclic tests were performed. The experiments include four reinforced concrete (RC) joints with the same ratio of shear closed-stirrup reinforcement and two different volumetric ratios of longitudinal steel reinforcing bars. Two joints were tested as-built, and the other two were strengthened with CFRP ropes. The ropes were applied as Near Surface Mounted (NSM) reinforcement, forming an X-shape around the joint body and further as flexural reinforcement at the top and bottom of the beam. The purpose of the externally mounted CFRP ropes is to allow the development of higher values of concrete principal stresses inside the joint core, compared with the specimens without ropes, and also to reduce the developing shear deformation in the joint. From the results, it is concluded that X-shaped ropes reduced the shear deformation in the joint body remarkably, especially in high drifts. Further, as a result of the comparisons between the yielded outcome from the attempted nonlinear analysis and the observed response from the tests, it is deduced that the adopted method sufficiently describes the whole behavior of the RC beam-column connections. In particular, comparisons between experimental and numerical results of principal stresses developing in the joint body of all examined specimens, along with similar comparisons of force displacement envelopes and shear deformations of the joint body, confirmed the adequacy of the applied finite element approach for the investigation of the use of CFRP-ropes as an efficient and easy-to-apply strengthening technique. The findings also reveal that the connections that have been strengthened with the FRP ropes demonstrated improved performance, and the crack system preserved its load capacity during the reversal loading tests

    U-Jacketing Applications of Fiber-Reinforced Polymers in Reinforced Concrete T-Beams against Shear—Tests and Design

    No full text
    The application of externally bonded fiber-reinforced polymer (EB-FRP) as shear transverse reinforcement applied in vulnerable reinforced concrete (RC) beams has been proved to be a promising strengthening technique. However, past studies revealed that the effectiveness of this method depends on how well the reinforcement is bonded to the concrete surface. Thus, although the application of EB-FRP wrapping around the perimeter of rectangular cross-sections leads to outstanding results, U-jacketing in shear-critical T-beams seems to undergo premature debonding failures resulting in significant reductions of the predictable strength. In this work, five shear-critical RC beams with T-shaped cross-section were constructed, strengthened and tested in four-point bending. Epoxy bonded carbon FRP (C-FRP) sheets were applied on the three sides and along the entire length of the shear-strengthened T-beams as external transverse reinforcement. Furthermore, the potential enhancement of the C-FRP sheets anchorage using bolted steel laminates has been examined. Test results indicated that although the C-FRP strengthened beams exhibited increased shear capacity, the brittle failure mode was not prevented due to the debonding of the FRP from the concrete surface. Nevertheless, the applied mechanical anchor of the C-FRP sheets delayed the debonding. Moreover, the design provisions of three different code standards (Greek Code of Interventions, Eurocode 8 and ACI Committee 440) concerning the shear capacity of T-shaped RC beams retrofitted with EB-FRP jackets or strips in U-jacketing configuration are investigated. The ability of these code standards to predict safe design estimations is checked against 165 test data from the current experimental project and data available in the literature

    Analysis of Residual Flexural Stiffness of Steel Fiber-Reinforced Concrete Beams with Steel Reinforcement

    No full text
    This paper investigates the ability of steel fibers to enhance the short-term behavior and flexural performance of realistic steel fiber-reinforced concrete (SFRC) structural members with steel reinforcing bars and stirrups using nonlinear 3D finite element (FE) analysis. Test results of 17 large-scale beam specimens tested under monotonic flexural four-point loading from the literature are used as an experimental database to validate the developed nonlinear 3D FE analysis and to study the contributions of steel fibers on the initial stiffness, strength, deformation capacity, cracking behavior, and residual stress. The examined SFRC beams include various ratios of longitudinal reinforcement (0.3%, 0.6%, and 1.0%) and steel fiber volume fractions (from 0.3% to 1.5%). The proposed FE analysis employs the nonlinearities of the materials with new and established constitutive relationships for the SFRC under compression and tension based on experimental data. Especially for the tensional response of SFRC, an efficient smeared crack approach is proposed that utilizes the fracture properties of the material utilizing special stress versus crack width relations with tension softening for the post-cracking SFRC tensile response instead of stress–strain laws. The post-cracking tensile behavior of the SFRC near the reinforcing bars is modeled by a tension stiffening model that considers the SFRC fracture properties, the steel fiber interaction in cracked concrete, and the bond behavior of steel bars. The model validation is carried out comparing the computed key overall and local responses and responses measured in the tests. Extensive comparisons between numerical and experimental results reveal that a reliable and computationally-efficient model captures well the key aspects of the response, such as the SFRC tension softening, the tension stiffening effect, the bending moment–curvature envelope, and the favorable contribution of the steel fibers on the residual response. The results of this study reveal the favorable influence of steel fibers on the flexural behavior, the cracking performance, and the post-cracking residual stress

    Cyclic Response of Steel Fiber Reinforced Concrete Slender Beams: An Experimental Study

    No full text
    Reinforced concrete (RC) beams under cyclic loading usually suffer from reduced aggregate interlock and eventually weakened concrete compression zone due to severe cracking and the brittle nature of compressive failure. On the other hand, the addition of steel fibers can reduce and delay cracking and increase the flexural/shear capacity and the ductility of RC beams. The influence of steel fibers on the response of RC beams with conventional steel reinforcements subjected to reversal loading by a four-point bending scheme was experimentally investigated. Three slender beams, each 2.5 m long with a rectangular cross-section, were constructed and tested for the purposes of this investigation; two beams using steel fibrous reinforced concrete and one with plain reinforced concrete as the reference specimen. Hook-ended steel fibers, each with a length-to-diameter ratio equal to 44 and two different volumetric proportions (1% and 3%), were added to the steel fiber reinforced concrete (SFRC) beams. Accompanying, compression, and splitting tests were also carried out to evaluate the compressive and tensile splitting strength of the used fibrous concrete mixtures. Test results concerning the hysteretic response based on the energy dissipation capabilities (also in terms of equivalent viscous damping), the damage indices, the cracking performance, and the failure of the examined beams were presented and discussed. Test results indicated that the SFRC beam demonstrated improved overall hysteretic response, increased absorbed energy capacities, enhanced cracking patterns, and altered failure character from concrete crushing to a ductile flexural one compared to the RC beam. The non-fibrous reference specimen demonstrated shear diagonal cracking failing in a brittle manner, whereas the SFRC beam with 1% steel fibers failed after concrete spalling with satisfactory ductility. The SFRC beam with 3% steel fibers exhibited an improved cyclic response, achieving a pronounced flexural behavior with significant ductility due to the ability of the fibers to transfer the developed tensile stresses across crack surfaces, preventing inclined shear cracks or concrete spalling. A report of an experimental database consisting of 39 beam specimens tested under cyclic loading was also presented in order to establish the effectiveness of steel fibers, examine the fiber content efficiency and clarify their role on the hysteretic response and the failure mode of RC structural members

    Efficacy and Damage Diagnosis of Reinforced Concrete Columns and Joints Strengthened with FRP Ropes Using Piezoelectric Transducers

    No full text
    Recent research has indicated that the implantation of a network of piezoelectric transducer patches in element regions of potential damage development, such as the beam–column joint (BCJ) area, substantially increases the efficacy and accuracy of the structural health monitoring (SHM) methods to identify damage level, providing a reliable diagnosis. The use of piezoelectric lead zirconate titanate (PZT) transducers for the examination of the efficiency of an innovative strengthening technique of reinforced concrete (RC) columns and BCJs is presented and commented on. Two real-scale RC BCJ subassemblages were constructed for this investigation. The columns and the joint panel of the second subassemblage were externally strengthened with carbon fiber-reinforced polymer (C-FRP) ropes. To examine the efficiency of this strengthening technique we used the following transducers: (a) PZT sensors on the ropes and the concrete; (b) tSring linear variable displacement transducers (SLVDTs), diagonally installed on the BCJ, to measure the shear deformations of the BCJ panel; (c) Strain gauges on the internal steel bars. From the experimental results, it became apparent that the PZT transducers successfully diagnosed the loading step at which the primary damage occurred in the first BCJ subassemblage and the damage state of the strengthened BCJ during the loading procedure. Further, data acquired from the diagonal SLVDTs and the strain gauges provided insight into the damage state of the two tested specimens at each step of the loading procedure and confirmed the diagnosis provided by the PZT transducers. Furthermore, data acquired by the PZT transducers, SLVDTs and strain gauges proved the effectiveness of the applied strengthening technique with C-FRP ropes externally mounted on the column and the conjunction area of the examined BCJ subassemblages

    Structural Pounding Effect on the Seismic Performance of a Multistorey Reinforced Concrete Frame Structure

    No full text
    During intense ground motion excitations, the pounding between adjacent buildings may result in extensive structural damage. Despite the provision of regulations regarding the minimum separation gap required to prevent structural collisions, the majority of existing structures are poorly separated. The modern seismic design and assessment of structures are based on the definition of acceptable response levels in relation to the intensity of seismic action, which is usually determined by an acceptable probability of exceedance. From this point of view, the seismic performance of a typical eight-storey reinforced concrete (RC) frame structure is evaluated in terms of pounding. In particular, the performance is evaluated using six different separation gap distances as a fraction of the EC8 minimum distance. As the height of the adjacent structure affected the required separation distance, the examined RC structure was assumed to interact with four idealized rigid structures of one to four storeys. The typical storey height was equal between the examined structures; therefore, collision could occur at the diaphragm level. To this end, incidental dynamic analyses (IDAs) were performed, and the fragility curves for different limit states were obtained for each case. Finally, the seismic fragility was combined with the hazard data to evaluate the seismic performance probabilistically

    Effectiveness of the Novel Rehabilitation Method of Seismically Damaged RC Joints Using C-FRP Ropes and Comparison with Widely Applied Method Using C-FRP Sheets—Experimental Investigation

    No full text
    The necessity of ensuring the long-term sustainability of existing structures is rising. An important issue concerning existing reinforced concrete (RC) structures in seismically active regions is that a significant number of them lack the required earthquake-resistant capacities to meet the increased design earthquake demands. Inexpensive, fast and long-term strengthening strategies for repairing/strengthening RC structures are urgently required, not only after destructive earthquakes, but even before they occur. Retrofitting existing buildings extending their service life rather than demolishing and rebuilding new ones is the best option in terms of economic gain and environmental protection. This paper experimentally investigates the effectiveness of externally applied (i) carbon fiber-reinforced polymer (C-FRP) ropes in X-type form and (b) C-FRP sheets that are bonded on both sides of the joint area of RC beam-column joint connections. Six comparative full-scale exterior RC beam-column joint specimens were tested under reverse cyclic deformation. Two of them were control specimens, two were strengthened using C-FRP ropes (novel technique) and two were retrofitted using C-FRP sheets (widely used technique). Extensive comparisons and discussion of the test results derive new quantitative and qualitative results concerning the seismic capacity and the service life extension of the strengthened RC members using the proposed retrofitting scheme

    Electro-Mechanical Impedance-Based Structural Health Monitoring of Fiber-Reinforced Concrete Specimens under Four-Point Repeated Loading

    No full text
    Fiber Reinforced Concrete (FRC) has shown significant promise in enhancing the safety and reliability of civil infrastructures. Structural Health Monitoring (SHM) has recently become essential due to the increasing demand for the safety and sustainability of civil infrastructures. Thus, SHM provides critical benefits for future research to develop more advanced monitoring systems that effectively detect and diagnose the damage in FRC structures. This study investigates the potential of an Electro-Mechanical Impedance (EMI) based SHM system for detecting cracks in FRC prisms subjected to four-point repeated loading. For the needs of this research, an experimental investigation of three FRC specimens with the dimensions 150 × 150 × 450 (mm) were subjected to three different loading levels where no visual cracks formed on their surface. Next, prisms were subjected to reloading until they depleted their load-carrying capacity, resulting in pure bending fracture at the mid-span. A network of nine cement paste coated Piezoelectric lead Zirconate Titanate (PZT) transducers have been epoxy bonded to the surface of the FRC prisms, and their frequency signal measurements were utilized for quantitative damage assessment. The observed changes in the frequency response of each PZT sensor are evaluated as solid indications of potential damage presence, and the increasing trend connotes the severity of the damage. The well-known conventional static metric of the Root Mean Square Deviation (RMSD) was successfully used to quantify and evaluate the cracking in FRC specimens while improving the efficiency and accuracy of damage detection. Similarly, the dynamic metric of a new statistical index called “moving Root Mean Square Deviation” (mRMSD) was satisfactorily used and compared to achieve and enhance accuracy in the damage evaluation process
    corecore