758 research outputs found

    Multiscale Mechanistic Insights of Shaped Catalyst Body Formulations and Their Impact on Catalytic Properties

    Get PDF
    International audienceZeolite-based catalysts are globally employed in many industrial processes, such as in crude-oil refining and in the production of bulk chemicals. However, to be implemented in industrial reactors efficiently, zeolite powders are required to be shaped in catalyst bodies. Scale-up of zeolite catalysts into such forms comes with side effects to its overall physicochem-ical properties and to those of its constituting components. Although fundamental research into "technical" solid catalysts is scarce, binder effects have been reported to significantly impact their catalytic properties and lifetime. Given the large number of additional (in)organic components added in the formulation, it is somehow surprising to see that there is a distinct lack of research into the unintentional impact organic additives can have on the properties of the zeolite and the catalyst bodies in general. Here, we systematically prepared a series of alumina-bound zeolite ZSM-5-based catalyst bodies, with organic additives such as peptizing, plasticizing, and lubricating agents, to rationalize their impacts on the physicochemical properties of the shaped catalyst bodies. By utilizing a carefully selected arsenal of bulk and high-spatial resolution multiscale characterization techniques, as well as specifically sized bioinspired fluorescent nanoprobes to study pore accessibility, we clearly show that, although the organic additives achieve their primary function of a mechanically robust material, uncontrolled processes are taking place in parallel. We reveal that the extrusion process can lead to zeolite dealumination (from acid peptizing treatment, and localized steaming upon calcination); meso-and macropore structural rearrangement (via burning-out of organic plasticizing and lubricating agents upon calcination); and abating of known alumina binder effects (via scavenging of Al species via chelating lubricating agents), which significantly impact catalytic performance. Understanding the mechanisms behind such effects in industrial-grade catalyst formulations can lead to enhanced design of these important materials, which can improve process efficiency in a vast range of industrial catalytic reactions

    Effect of zeolite topology and reactor configuration on the direct conversion of CO2 to light olefins and aromatics

    Get PDF
    The direct transformation of CO2 into high-value-added hydrocarbons (i.e., olefins and aromatics) has the potential to make a decisive impact in our society. However, despite the efforts of the scientific community, no direct synthetic route exists today to synthesize olefins and aromatics from CO2 with high productivities and low undesired CO selectivity. Herein, we report the combination of a series of catalysts comprising potassium superoxide doped iron oxide and a highly acidic zeolite (ZSM-5 and MOR) that directly convert CO2 to either light olefins (in MOR) or aromatics (in ZSM-5) with high space–time yields (STYC2-C4= = 11.4 mmol·g–1·h–1; STYAROM = 9.2 mmol·g–1·h–1) at CO selectivities as low as 12.8% and a CO2 conversion of 49.8% (reaction conditions: T = 375 °C, P = 30 bar, H2/CO2 = 3, and 5000 mL·g–1·h–1). Comprehensive solid-state nuclear magnetic resonance characterization of the zeolite component reveals that the key for the low CO selectivity is the formation of surface formate species on the zeolite framework. The remarkable difference in selectivity between the two zeolites is further rationalized by first-principles simulations, which show a difference in reactivity for crucial carbenium ion intermediates in MOR and ZSM-5

    Valence and spin situations in isomeric [(bpy)Ru(Qâ€Č)2]n (Qâ€Č = 3,5-di-tert- butyl-N-aryl-1,2-benzoquinonemonoimine). An experimental and DFT analysis

    Get PDF
    The article deals with the ruthenium complexes, [(bpy)Ru(Qâ€Č)2] (1–3) incorporating two unsymmetrical redox-noninnocent iminoquinone moieties [bpy = 2,2â€Č-bipyridine; Qâ€Č = 3,5-di-tert-butyl-N-aryl-1,2-benzoquinonemonoimine, aryl = C6H5 (Qâ€Č1), 1; m-Cl2C6H3 (Qâ€Č2), 2; m-(OCH3)2C6H3 (Qâ€Č3), 3]. 1 and 3 have been preferentially stabilised in the cc-isomeric form while both the ct- and cc-isomeric forms of 2 are isolated [ct: cis and trans and cc: cis and cis with respect to the mutual orientations of O and N donors of two Qâ€Č]. The isomeric identities of 1–3 have been authenticated by their single-crystal X-ray structures. The collective consideration of crystallographic and DFT data along with other analytical events reveals that 1–3 exhibit the valence configuration of [(bpy)RuII(Qâ€ČSq)2]. The magnetization studies reveal a ferromagnetic response at 300 K and virtual diamagnetic behaviour at 2 K. DFT calculations on representative 2a and 2b predict that the excited triplet (S = 1) state is lying close to the singlet (S = 0) ground state with singlet–triplet separation of 0.038 eV and 0.075 eV, respectively. In corroboration with the paramagnetic features the complexes exhibit free radical EPR signals with g [similar]2 and 1HNMR spectra with broad aromatic proton signals associated with the Qâ€Č at 300 K. Experimental results in conjunction with the DFT (for representative 2a and 2b) reveal iminoquinone based preferential electron-transfer processes leaving the ruthenium(II) ion mostly as a redox insensitive entity: [(bpy)RuII(Qâ€ČQ)2]2+ (12+–32+) [leftrightharpoons] [(bpy)RuII(Qâ€ČSq)(Qâ€ČQ)]+ (1+–3+) [leftrightharpoons] [(bpy)RuII(Qâ€ČSq)2] (1–3) [leftrightharpoons] [(bpy)RuII(Qâ€ČSq)(Qâ€ČCat)]−/[(bpy)RuIII(Qâ€ČCat)2]− (1−–3−). The diamagnetic doubly oxidised state, [(bpy)RuII(Qâ€ČQ)2]2+ in 12+–32+ has been authenticated further by the crystal structure determination of the representative [(bpy)RuII(Qâ€Č3)2](ClO4)2 [3](ClO4)2 as well as by its sharp 1H NMR spectrum. The key electronic transitions in each redox state of 1n–3n have been assigned by TD–DFT calculations on representative 2a and 2b

    A supramolecular view on the cooperative role of BrĂžnsted and Lewis acid sites in zeolites for methanol conversion

    Get PDF
    A systematic molecular level and spectroscopic investigation is presented to show the cooperative role of Bronsted acid and Lewis acid sites in zeolites for the conversion of methanol. Extra-framework alkaline-earth metal containing species and aluminum species decrease the number of Bronsted acid sites, as protonated metal clusters are formed. A combined experimental and theoretical effort shows that postsynthetically modified ZSM-5 zeolites, by incorporation of extra-framework alkaline-earth metals or by demetalation with dealuminating agents, contain both mononuclear [MOH](+) and double protonated binuclear metal clusters [M(mu-OH)(2)M](2+) (M = Mg, Ca, Sr, Ba, and HOAl). The metal in the extra-framework clusters has a Lewis acid character, which is confirmed experimentally and theoretically by IR spectra of adsorbed pyridine. The strength of the Lewis acid sites (Mg > Ca > Sr > Ba) was characterized by a blue shift of characteristic IR peaks, thus offering a tool to sample Lewis acidity experimentally. The incorporation of extra-framework Lewis acid sites has a substantial influence on the reactivity of propene and benzene methylations. Alkaline-earth Lewis acid sites yield increased benzene methylation barriers and destabilization of typical aromatic intermediates, whereas propene methylation routes are less affected. The effect on the catalytic function is especially induced by the double protonated binuclear species. Overall, the extra-framework metal clusters have a dual effect on the catalytic function. By reducing the number of Bronsted acid sites and suppressing typical catalytic reactions in which aromatics are involved, an optimal propene selectivity and increased lifetime for methanol conversion over zeolites is obtained. The combined experimental and theoretical approach gives a unique insight into the nature of the supramolecular zeolite catalyst for methanol conversion which can be meticulously tuned by subtle interplay of Bronsted and Lewis acid sites

    MedPerf : Open Benchmarking Platform for Medical Artificial Intelligence using Federated Evaluation

    Get PDF
    Medical AI has tremendous potential to advance healthcare by supporting the evidence-based practice of medicine, personalizing patient treatment, reducing costs, and improving provider and patient experience. We argue that unlocking this potential requires a systematic way to measure the performance of medical AI models on large-scale heterogeneous data. To meet this need, we are building MedPerf, an open framework for benchmarking machine learning in the medical domain. MedPerf will enable federated evaluation in which models are securely distributed to different facilities for evaluation, thereby empowering healthcare organizations to assess and verify the performance of AI models in an efficient and human-supervised process, while prioritizing privacy. We describe the current challenges healthcare and AI communities face, the need for an open platform, the design philosophy of MedPerf, its current implementation status, and our roadmap. We call for researchers and organizations to join us in creating the MedPerf open benchmarking platform

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV

    Get PDF
    A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb(-1) collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on themodel, the combined result excludes a top squarkmass up to 1325 GeV for amassless neutralino, and a neutralinomass up to 700 GeV for a top squarkmass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV

    Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at root s=13 TeV

    Get PDF
    Peer reviewe

    Observation of tW production in the single-lepton channel in pp collisions at root s=13 TeV

    Get PDF
    A measurement of the cross section of the associated production of a single top quark and a W boson in final states with a muon or electron and jets in proton-proton collisions at root s = 13 TeV is presented. The data correspond to an integrated luminosity of 36 fb(-1) collected with the CMS detector at the CERN LHC in 2016. A boosted decision tree is used to separate the tW signal from the dominant t (t) over bar background, whilst the subleading W+jets and multijet backgrounds are constrained using data-based estimates. This result is the first observation of the tW process in final states containing a muon or electron and jets, with a significance exceeding 5 standard deviations. The cross section is determined to be 89 +/- 4 (stat) +/- 12 (syst) pb, consistent with the standard model.Peer reviewe

    Measurements of the Electroweak Diboson Production Cross Sections in Proton-Proton Collisions at root s=5.02 TeV Using Leptonic Decays

    Get PDF
    The first measurements of diboson production cross sections in proton-proton interactions at a center-of-mass energy of 5.02 TeV are reported. They are based on data collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 302 pb(-1). Events with two, three, or four charged light leptons (electrons or muons) in the final state are analyzed. The WW, WZ, and ZZ total cross sections are measured as sigma(WW) = 37:0(-5.2)(+5.5) (stat)(-2.6)(+2.7) (syst) pb, sigma(WZ) = 6.4(-2.1)(+2.5) (stat)(-0.3)(+0.5)(syst) pb, and sigma(ZZ) = 5.3(-2.1)(+2.5)(stat)(-0.4)(+0.5) (syst) pb. All measurements are in good agreement with theoretical calculations at combined next-to-next-to-leading order quantum chromodynamics and next-to-leading order electroweak accuracy
    • 

    corecore