189 research outputs found

    Roadmap on metasurfaces

    Get PDF
    ABSTRACT: Metasurfaces are thin two-dimensional metamaterial layers that allow or inhibit the propagation of electromagnetic waves in desired directions. For example, metasurfaces have been demonstrated to produce unusual scattering properties of incident plane waves or to guide and modulate surface waves to obtain desired radiation properties. These properties have been employed, for example, to create innovative wireless receivers and transmitters. In addition, metasurfaces have recently been proposed to confine electromagnetic waves, thereby avoiding undesired leakage of energy and increasing the overall efficiency of electromagnetic instruments and devices. The main advantages of metasurfaces with respect to the existing conventional technology include their low cost, low level of absorption in comparison with bulky metamaterials, and easy integration due to their thin profile. Due to these advantages, they are promising candidates for real-world solutions to overcome the challenges posed by the next generation of transmitters and receivers of future high-rate communication systems that require highly precise and efficient antennas, sensors, active components, filters, and integrated technologies. This Roadmap is aimed at binding together the experiences of prominent researchers in the field of metasurfaces, from which explanations for the physics behind the extraordinary properties of these structures shall be provided from viewpoints of diverse theoretical backgrounds. Other goals of this endeavour are to underline the advantages and limitations of metasurfaces, as well as to lay out guidelines for their use in present and future electromagnetic devices. This Roadmap is divided into five sections: 1. Metasurface based antennas. In the last few years, metasurfaces have shown possibilities for advanced manipulations of electromagnetic waves, opening new frontiers in the design of antennas. In this section, the authors explain how metasurfaces can be employed to tailor the radiation properties of antennas, their remarkable advantages in comparison with conventional antennas, and the future challenges to be solved. 2. Optical metasurfaces. Although many of the present demonstrators operate in the microwave regime, due either to the reduced cost of manufacturing and testing or to satisfy the interest of the communications or aerospace industries, part of the potential use of metasurfaces is found in the optical regime. In this section, the authors summarize the classical applications and explain new possibilities for optical metasurfaces, such as the generation of superoscillatory fields and energy harvesters. 3. Reconfigurable and active metasurfaces. Dynamic metasurfaces are promising new platforms for 5G communications, remote sensing and radar applications. By the insertion of active elements, metasurfaces can break the fundamental limitations of passive and static systems. In this section, we have contributions that describe the challenges and potential uses of active components in metasurfaces, including new studies on non-Foster, parity-time symmetric, and non-reciprocal metasurfaces. 4. Metasurfaces with higher symmetries. Recent studies have demonstrated that the properties of metasurfaces are influenced by the symmetries of their constituent elements. Therefore, by controlling the properties of these constitutive elements and their arrangement, one can control the way in which the waves interact with the metasurface. In this section, the authors analyze the possibilities of combining more than one layer of metasurface, creating a higher symmetry, increasing the operational bandwidth of flat lenses, or producing cost-effective electromagnetic bandgaps. 5. Numerical and analytical modelling of metasurfaces. In most occasions, metasurfaces are electrically large objects, which cannot be simulated with conventional software. Modelling tools that allow the engineering of the metasurface properties to get the desired response are essential in the design of practical electromagnetic devices. This section includes the recent advances and future challenges in three groups of techniques that are broadly used to analyze and synthesize metasurfaces: circuit models, analytical solutions and computational methods

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    Wavefront Manipulation with Metasurfaces Based on New Materials

    No full text
    Metasurfaces, introduced as a compact 2D alternative of metamaterials, have developed into a vast field in recent times for light manipulation at an ultra-compact scale. Metasurface applications have found a place in the literature for compact alternatives to lens, holograms, polarizers, color filters. Plasmonic metasurfaces consisting of noble metals such as gold and silver provide light confinement on an unprecedented scale. Gold and silver grown conventionally on transparent substrates are polycrystalline, and exhibit losses and limit performance of the device. Moreover, these materials have a lower damage threshold and melting point. To circumvent the lower melting point and damage thresholds, new materials, and material growing techniques need to be researched. In the first part of this work, a metasurface for color holography with an epitaxially grown silver thin film on a transparent substrate is shown. The demonstrated metasurface has been the first ever epitaxial silver metasurface that operated in the transmission mode. This plasmonic hologram has also been the thinnest metasurface hologram operating in transmission mode at the time of its reporting. The holographic image of all three basic color components of red, green, and blue has been demonstrated in the transmission mode. The control of color has been achieved by resonant sub-wavelength slits and the phase can be manipulated through altering slit orientation. This amplitude and phase control pave the way to applications of ultra-compact polychromatic plasmonic metasurfaces for advanced light manipulation. In the second part, we explore temperature rise due to the optical absorption in plasmonic structures. Titanium Nitride based metasurfaces structures are fabricated, that work in harsh environmental conditions and high temperature. A time domain thermo reflectance technique for rapid measurement of temperature is explored. Finally, a practical design prototype for thermo-photovoltaic (TPV) emitters using plasmonic metasurfaces is fabricated and characterized

    A review on plasmonic and metamaterial based biosensing platforms for virus detection

    No full text
    Due to changes in our climate and constant loss of habitat for animals, new pathogens for humans are constantly erupting. SARS-CoV-2 virus, become so infectious and deadly that they put new challenge to the whole technological advancement of healthcare. Within this very decade, several other deadly virus outbreaks were witnessed by humans such as Zika virus, Ebola virus, MERS-coronavirus etc. and there might be even more infectious and deadlier diseases in the horizon. Though conventional techniques have succeeded in detecting these viruses to some extent, these techniques are time-consuming, costly, and require trained human-resources. Plasmonic metamaterial based biosensors might pave the way to low-cost rapid virus detection. So this review discusses in details, the latest development in plasmonics and metamaterial based biosensors for virus, viral particles and antigen detection and the future direction of research in this field

    Material platforms for optical metasurfaces

    No full text
    Optical metasurfaces are judicously engineered electromagnetic interfaces that can control and manipulate many of light’s quintessential properties, such as amplitude, phase, and polarization. These artificial surfaces are composed of subwavelength arrays of optical antennas that experience resonant light-matter interaction with incoming electromagnetic radiation. Their ability to arbitrarily engineer optical interactions has generated considerable excitement and interest in recent years and is a promising methodology for miniaturizing optical components for applications in optical communication systems, imaging, sensing, and optical manipulation. However, development of optical metasurfaces requires progress and solutions to inherent challenges, namely large losses often associated with the resonant structures; large-scale, complementary metal-oxide-semiconductor-compatible nanofabrication techniques; and incorporation of active control elements. Furthermore, practical metasurface devices require robust operation in high-temperature environments, caustic chemicals, and intense electromagnetic fields. Although these challenges are substantial, optical metasurfaces remain in their infancy, and novel material platforms that offer resilient, low-loss, and tunable metasurface designs are driving new and promising routes for overcoming these hurdles. In this review, we discuss the different material platforms in the literature for various applications of metasurfaces, including refractory plasmonic materials, epitaxial noble metal, silicon, graphene, phase change materials, and metal oxides. We identify the key advantages of each material platform and review the breakthrough devices that were made possible with each material. Finally, we provide an outlook for emerging metasurface devices and the new material platforms that are enabling such devices
    corecore