10,257 research outputs found

    Surface wave scattering at nonuniform fluid interfaces

    Full text link
    Effects of spatially varying interfacial parameters on the propagation of surface waves are studied. These variations can arise from inhomogeneities in coverage of surface active substances such as amphiphillic molecules at the fluid/gas interface. Such variations often occur in phase coexistence regions of Langmuir monolayers. Wave scattering from these surface inhomogeneities are calculated in the limit of small variations in the surface parameters by using the asymptotic form of surface Green's functions in the first order Born approximation. When viscosity and variations in surface elastic moduli become important, modes other than transverse capillary waves can change the characteristics of propagation. Scattering among these modes provides a mechanism for surface wave attenuation in addition to viscous damping on a homogeneous surfactant covered interface. Experimental detection of waves attenuation and scattering is also discussed.Comment: 11 pages; 8 figures on reques

    New Detectors to Explore the Lifetime Frontier

    Full text link
    Long-lived particles (LLPs) are a common feature in many beyond the Standard Model theories, including supersymmetry, and are generically produced in exotic Higgs decays. Unfortunately, no existing or proposed search strategy will be able to observe the decay of non-hadronic electrically neutral LLPs with masses above ∼\sim GeV and lifetimes near the limit set by Big Bang Nucleosynthesis (BBN), cτ≲107−108c \tau \lesssim 10^7 - 10^8~m. We propose the MATHUSLA surface detector concept (MAssive Timing Hodoscope for Ultra Stable neutraL pArticles), which can be implemented with existing technology and in time for the high luminosity LHC upgrade to find such ultra-long-lived particles (ULLPs), whether produced in exotic Higgs decays or more general production modes. We also advocate for a dedicated LLP detector at a future 100 TeV collider, where a modestly sized underground design can discover ULLPs with lifetimes at the BBN limit produced in sub-percent level exotic Higgs decays.Comment: 7 pages, 4 figures. Added more detail to discussion of backgrounds. Various minor clarifications. Results and conclusions unchange

    Total posterior leg open wound management with free anterolateral thigh flap: case and literature review.

    Get PDF
    Soft tissue coverage of the exposed Achilles tendon is a unique reconstructive challenge. In this report, we describe the management of a large posterior leg wound with exposed Achilles tendon using a free anterolateral thigh (ALT) flap. A careful review of alternative reconstructive options is included, along with their respective advantages and disadvantages. A 32-year-old white man suffered a fulminant right lower extremity soft tissue infection requiring extensive debridement of the entire posterior surface of the right leg. The resulting large soft tissue defect included exposure of the Achilles tendon. Reconstruction of the defect was achieved with an ALT flap and split-thickness skin graft for coverage of the Achilles tendon and gastrocnemius muscle, respectively. The patient was able to ambulate independently within 2 months of the procedure

    Quantum dot behavior in graphene nanoconstrictions

    Full text link
    Graphene nanoribbons display an imperfectly understood transport gap. We measure transport through nanoribbon devices of several lengths. In nanoribbons of length greater than or equal to 250 nm we observe transport through multiple quantum dots in series, while shorter constrictions of length less than or equal to 60 nm display behavior characteristic of single and double quantum dots. Dot size scales with constriction width. We propose a model where transport occurs through quantum dots that are nucleated by background disorder potentials in the presence of a confinement gap.Comment: published version: 24 pages, 9 figures (includes supplementary information

    The Emergent Landscape of Detecting EGFR Mutations Using Circulating Tumor DNA in Lung Cancer.

    Get PDF
    The advances in targeted therapies for lung cancer are based on the evaluation of specific gene mutations especially the epidermal growth factor receptor (EGFR). The assays largely depend on the acquisition of tumor tissue via biopsy before the initiation of therapy or after the onset of acquired resistance. However, the limitations of tissue biopsy including tumor heterogeneity and insufficient tissues for molecular testing are impotent clinical obstacles for mutation analysis and lung cancer treatment. Due to the invasive procedure of tissue biopsy and the progressive development of drug-resistant EGFR mutations, the effective initial detection and continuous monitoring of EGFR mutations are still unmet requirements. Circulating tumor DNA (ctDNA) detection is a promising biomarker for noninvasive assessment of cancer burden. Recent advancement of sensitive techniques in detecting EGFR mutations using ctDNA enables a broad range of clinical applications, including early detection of disease, prediction of treatment responses, and disease progression. This review not only introduces the biology and clinical implementations of ctDNA but also includes the updating information of recent advancement of techniques for detecting EGFR mutation using ctDNA in lung cancer

    CORPORATE SOCIAL RESPONSIBILITY AND GREEN IT: THE LINKAGE AND CASE ANALYSIS

    Get PDF
    Corporate social responsibility (CSR) and Green information technology (Green IT) are two important disciplines that could be cooperatively work toward a common goal of achieving environmental sustainability and ultimately, reaching to ultimate sustainability in society. This study discussed a method of value model analysis that combines the operational procedures of CSR and Green IT. A case study is adopted to illustrate the four stages’ value creation process
    • …
    corecore