6 research outputs found

    Abasic sites and strand breaks in DNA cause transcriptional mutagenesis in Escherichia coli

    No full text
    DNA damage occurs continuously, and faithful replication and transcription are essential for maintaining cell viability. Cells in nature are not dividing and replicating DNA often; therefore it is important to consider the outcome of RNA polymerase (RNAP) encounters with DNA damage. Base damage in the DNA can affect transcriptional fidelity, leading to production of mutant mRNA and protein in a process termed transcriptional mutagenesis (TM). Abasic (AP) sites and strand breaks are frequently occurring, spontaneous damages that are also base excision repair (BER) intermediates. In vitro studies have demonstrated that these lesions can be bypassed by RNAP; however this has never been assessed in vivo. This study demonstrates that RNAP is capable of bypassing AP sites and strand breaks in Escherichia coli and results in TM through adenine incorporation in nascent mRNA. Elimination of the enzymes that process these lesions further increases TM; however, such mutants can still complete repair by other downstream pathways. These results show that AP sites and strand breaks can result in mutagenic RNAP bypass and have important implications for the biologic endpoints of DNA damage

    NF-κB inhibition delays DNA damage–induced senescence and aging in mice

    No full text
    The accumulation of cellular damage, including DNA damage, is thought to contribute to aging-related degenerative changes, but how damage drives aging is unknown. XFE progeroid syndrome is a disease of accelerated aging caused by a defect in DNA repair. NF-κB, a transcription factor activated by cellular damage and stress, has increased activity with aging and aging-related chronic diseases. To determine whether NF-κB drives aging in response to the accumulation of spontaneous, endogenous DNA damage, we measured the activation of NF-κB in WT and progeroid model mice. As both WT and progeroid mice aged, NF-κB was activated stochastically in a variety of cell types. Genetic depletion of one allele of the p65 subunit of NF-κB or treatment with a pharmacological inhibitor of the NF-κB–activating kinase, IKK, delayed the age-related symptoms and pathologies of progeroid mice. Additionally, inhibition of NF-κB reduced oxidative DNA damage and stress and delayed cellular senescence. These results indicate that the mechanism by which DNA damage drives aging is due in part to NF-κB activation. IKK/NF-κB inhibitors are sufficient to attenuate this damage and could provide clinical benefit for degenerative changes associated with accelerated aging disorders and normal aging

    Genotoxic stress accelerates age-associated degenerative changes in intervertebral discs

    No full text
    Intervertebral disc degeneration (IDD) is the leading cause of debilitating spinal disorders such as chronic lower back pain. Aging is the greatest risk factor for IDD. Previously, we demonstrated IDD in a murine model of a progeroid syndrome caused by reduced expression of a key DNA repair enzyme. This led us to hypothesize that DNA damage promotes IDD. To test our hypothesis, we chronically exposed adult wild-type (Wt) and DNA repair-deficient Ercc1(-/\u394) mice to the cancer therapeutic agent mechlorethamine (MEC) or ionization radiation (IR) to induce DNA damage and measured the impact on disc structure. Proteoglycan, a major structural matrix constituent of the disc, was reduced 3-5 7 in the discs of MEC- and IR-exposed animals compared to untreated controls. Expression of the protease ADAMTS4 and aggrecan proteolytic fragments was significantly increased. Additionally, new PG synthesis was reduced 2-3 7 in MEC- and IR-treated discs compared to untreated controls. Both cellular senescence and apoptosis were increased in discs of treated animals. The effects were more severe in the DNA repair-deficient Ercc1(-/\u394) mice than in Wt littermates. Local irradiation of the vertebra in Wt mice elicited a similar reduction in PG. These data demonstrate that genotoxic stress drives degenerative changes associated with IDD
    corecore