9,773 research outputs found

    Structural reliability prediction of a steel bridge element using dynamic object oriented Bayesian Network (DOOBN)

    Get PDF
    Different from conventional methods for structural reliability evaluation, such as, first/second-order reliability methods (FORM/SORM) or Monte Carlo simulation based on corresponding limit state functions, a novel approach based on dynamic objective oriented Bayesian network (DOOBN) for prediction of structural reliability of a steel bridge element has been proposed in this paper. The DOOBN approach can effectively model the deterioration processes of a steel bridge element and predict their structural reliability over time. This approach is also able to achieve Bayesian updating with observed information from measurements, monitoring and visual inspection. Moreover, the computational capacity embedded in the approach can be used to facilitate integrated management and maintenance optimization in a bridge system. A steel bridge girder is used to validate the proposed approach. The predicted results are compared with those evaluated by FORM method

    Posterior Cervical Spine Crisscross Fixation: Biomechanical Evaluation

    Get PDF
    Background Biomechanical/anatomic limitations may limit the successful implantation, maintenance, and risk acceptance of posterior cervical plate/rod fixation for one stage decompression-fusion. A method of posterior fixation (crisscross) that resolves biomechanical deficiencies of previous facet wiring techniques and not reliant upon screw implantation has been devised. The biomechanical performance of the new method of facet fixation was compared to the traditional lateral mass plate/screw fixation method. Methods Thirteen human cadaver spine segments (C2-T1) were tested under flexion-compression loading and four were evaluated additionally under pure-moment load. Preparations were evaluated in a sequence of surgical alterations with intact, laminectomy, lateral mass plate/screw fixation, and crisscross facet fixation using forces, displacements and kinematics. Findings Combined loading demonstrated significantly lower bending stiffness (p \u3c 0.05) between laminectomy compared to crisscross and lateral mass plate/screw preparations. Crisscross fixation showed a comparative tendency for increased stiffness. The increased overall motion induced by laminectomy was resolved by both fixation techniques, with crisscross fixation demonstrating a comparatively more uniform change in segmental motions. Interpretation The crisscross technique of facet fixation offers immediate mechanical stability with resolution of increased flexural rotations induced by multi-level laminectomy. Many of the anatomic limitations and potentially deleterious variables that may be associated with multi-level screw fixation are not associated with facet wire passage, and the subsequent fixation using a pattern of wire connection crossing each facet joint exhibits a comparatively more uniform load distribution. Crisscross wire fixation is a valuable addition to the surgical armamentarium for extensive posterior cervical single-stage decompression-fixation

    Extend the shallow part of Single Shot MultiBox Detector via Convolutional Neural Network

    Full text link
    Single Shot MultiBox Detector (SSD) is one of the fastest algorithms in the current object detection field, which uses fully convolutional neural network to detect all scaled objects in an image. Deconvolutional Single Shot Detector (DSSD) is an approach which introduces more context information by adding the deconvolution module to SSD. And the mean Average Precision (mAP) of DSSD on PASCAL VOC2007 is improved from SSD's 77.5% to 78.6%. Although DSSD obtains higher mAP than SSD by 1.1%, the frames per second (FPS) decreases from 46 to 11.8. In this paper, we propose a single stage end-to-end image detection model called ESSD to overcome this dilemma. Our solution to this problem is to cleverly extend better context information for the shallow layers of the best single stage (e.g. SSD) detectors. Experimental results show that our model can reach 79.4% mAP, which is higher than DSSD and SSD by 0.8 and 1.9 points respectively. Meanwhile, our testing speed is 25 FPS in Titan X GPU which is more than double the original DSSD.Comment: 7 pages, 3 figures, 3 table

    Fractional topological insulators in three dimensions

    Full text link
    Topological insulators can be generally defined by a topological field theory with an axion angle theta of 0 or pi. In this work, we introduce the concept of fractional topological insulator defined by a fractional axion angle and show that it can be consistent with time reversal (T) invariance if ground state degeneracies are present. The fractional axion angle can be measured experimentally by the quantized fractional bulk magnetoelectric polarization P_3, and a `halved' fractional quantum Hall effect on the surface with Hall conductance of the form (p/q)(e^2/2h) with p,q odd. In the simplest of these states the electron behaves as a bound state of three fractionally charged `quarks' coupled to a deconfined non-Abelian SU(3) `color' gauge field, where the fractional charge of the quarks changes the quantization condition of P_3 and allows fractional values consistent with T-invariance.Comment: 4+epsilon pages, 1 figure; accepted for publication in Phys. Rev. Let
    • …
    corecore