15 research outputs found

    New Approaches towards the Design of Tough Amphiphilic Polymeric Co-networks

    Full text link
    © The Royal Society of Chemistry 2020. Since the 1960s, polymer network hydrogels have been used for various applications. However, these applications have been restricted to non-load-bearing ones, due to the inherent mechanical weakness of common hydrogels. This weakness is attributed to the irregular crosslinking density, the high proportion of singly-attached (dangling and, therefore, elastically inactive) chains and the broadly varying distance between crosslinking points. In recent years, ground-breaking studies focusing on the development of novel approaches to fabricate near-ideal polymer network hydrogels with excellent mechanical properties have been developed. In this chapter, these new approaches will be outlined, with specific interest in amphiphilic polymer co-networks (APCNs), i.e. networks containing both hydrophilic and hydrophobic domains. The ability to generate these near-ideal networks, which often also possess 'smart' stimuli-responsive properties, would allow APCNs to be used in a wide range of advanced applications, including soft robotics, biomaterials and materials science. These new synthetic methodologies will be described in this chapter and will be separated into either fundamentally altering the network architecture and/or by employing facile and orthogonal coupling chemistries

    The effectiveness and cost-effectiveness of plant sterol or stanol-enriched functional foods as a primary prevention strategy for people with cardiovascular disease risk in England: a modeling study

    Get PDF
    This study appraises the effectiveness and cost-effectiveness of consumption of plant sterol-enriched margarine-type spreads for the prevention of cardiovascular disease (CVD) in people with hypercholesterolemia in England, compared to a normal diet. A nested Markov model was employed using the perspective of the British National Health Service (NHS). Effectiveness outcomes were the 10-year CVD risk of individuals with mild (4–6 mmol/l) and high (above 6 mmol/l) cholesterol by gender and age groups (45–54, 55–64, 65–74, 75–85 years); CVD events avoided and QALY gains over 20 years. This study found that daily consumption of enriched spread reduces CVD risks more for men and older age groups. Assuming 50% compliance, 69 CVD events per 10,000 men and 40 CVD events per 10,000 women would be saved over 20 years. If the NHS pays the excess cost of enriched spreads, for the high-cholesterol group, the probability of enriched spreads being cost-effective is 100% for men aged over 64 years and women over 74, at £20,000/QALY threshold. Probabilities of cost-effectiveness are lower at younger ages, with mildly elevated cholesterol and over a 10-year time horizon. If consumers bear the full cost of enriched spreads, NHS savings arise from reduced CVD events

    Principles and prospects for single-pixel imaging

    No full text
    Modern digital cameras employ silicon focal plane array (FPA) image sensors featuring millions of pixels. However, it is possible to make a camera that only needs one pixel. In these cameras a spatial light modulator, placed before or after the object to be imaged, applies a time-varying pattern and synchronized intensity measurements are made with a single-pixel detector. The principle of compressed sensing then allows an image to be generated. As the approach suits a wide a variety of detector technologies, images can be collected at wavelengths outside the reach of FPA technology or at high frame rates or in three dimensions. Promising applications include the visualization of hazardous gas leaks and 3D situation awareness for autonomous vehicles
    corecore