47 research outputs found

    Flying solo: Elevating student sound engineers into responsible work experience roles at live music events

    Get PDF
    The role of live sound mixer is somewhat akin to piloting an aeroplane full of passengers: you are in control of the outcome for a number of people for a certain time, and must take in a lot of sensory information, process and act upon it using highly technical controls and equipment. Work experience students at live events often work up to this role and have to undertake more menial tasks such as running cables, moving loudspeakers and other equipment, loading vans and trucks; even on a long-term placement. However, by taking the lead from pilot training where the learner takes the controls under supervision of a more experienced professional pilot, student sound engineers can assume control of a live mix with an audience present while benefitting from the guidance of a professional. This article discusses such an approach in the context of its place within or alongside the curriculum

    Sensor grid design for high resolution 3D acoustic measurements of musical instruments

    Get PDF
    [Paper presented at the Institute of Acoustics 2019 Conference, held in Milton Keynes, 13-14 May 2019.

    PKAN neurodegeneration and residual PANK2 activities in patient erythrocytes

    Get PDF
    Objective: Pantothenate kinase 2-associated neurodegeneration (PKAN) is a rare neurodegenerative disease caused by mutations in the pantothenate kinase 2 (PANK2) gene. PKAN is associated with iron deposition in the basal ganglia and, occasionally, with the occurrence of misshaped erythrocytes (acanthocytes). The aim of this study was to assess residual activity of PANK2 in erythrocytes of PKAN patients and to correlate these data with the type of PANK2 mutations and the progression of neurodegeneration. Methods: Residual PANK2 activities in erythrocytes of 14 PKAN patients and 14 related carriers were assessed by a radiometric assay. Clinical data on neurodegeneration included the Barry-Albright Dystonia Scale (BAD-Scale) besides further general patient features. A molecular visualization and analysis program was used to rationalize the influence of the PKAN causing mutations on a molecular level. Results: Erythrocytes of PKAN patients had markedly reduced or no PANK2 activity. However, patients with at least one allele of the c.1583C > T (T528M) or the c.833G > T (R278L) variant exhibited 12-56% of residual PANK2 activity. In line, molecular modeling indicated only minor effects on enzyme structure for these point mutations. On average, these patients with c.1583C > T or c.833G > T variant had lower BAD scores corresponding to lower symptom severity than patients with other PANK2 point mutations. Interpretation: Residual erythrocyte PANK2 activity could be a predictor for the progression of neurodegeneration in PKAN patients. Erythrocytes are an interesting patient-derived cell system with still underestimated diagnostic potential

    Bringing KASH under the SUN: the many faces of nucleo-cytoskeletal connections

    Get PDF
    The nucleus is the most prominent cellular organelle, and its sharp boundaries suggest the compartmentalization of the nucleoplasm from the cytoplasm. However, the recent identification of evolutionarily conserved linkers of the nucleoskeleton to the cytoskeleton (LINC) complexes, a family of macromolecular assemblies that span the double membrane of the nuclear envelope, reveals tight physical connections between the two compartments. Here, we review the structure and evolutionary conservation of SUN and KASH domain–containing proteins, whose interaction within the perinuclear space forms the “nuts and bolts” of LINC complexes. Moreover, we discuss the function of these complexes in nuclear, centrosomal, and chromosome dynamics, and their connection to human disease

    Interrogating open issues in cancer precision medicine with patient-derived xenografts

    Full text link

    High Resolution Acoustic Measurements of Musical Instruments

    No full text
    This thesis presents the work undertaken while carrying out research into acoustic measurement techniques for 3-dimensional acoustic radiation data for musical instruments, specifically when the instruments are being played by musicians. The original contribution to knowledge that is presented includes the development of an algorithm which can be used for post-processing of recorded data to obtain signals from ‘virtual’ microphones. The project is discussed along with a rationale for the particular test and measurement procedure used in this research and is followed by a literature review outlining both historical and current research and writing relevant to the project. A design for high spatial resolution 3-D acoustic measurement apparatus is proposed, and the design details and construction methods are discussed. The measurement process is described, including the issues surrounding testing and the use of human musicians in the measurement of musical instrument acoustic radiation patterns. A novel algorithm is presented which applies transfer functions derived from interpolated measured data points in order to process recorded audio signals with applications in audio post-production. A prototype implementation of the algorithm is described along with its testing. The conclusion summarises the thesis; contains an evaluation of the work undertaken and the results; and explores potential future work from this project
    corecore