1,597 research outputs found

    Treatment of spent pickling baths coming from hot dip galvanizing by means of an electrochemical membrane reactor

    Full text link
    The performance of a one (OCR) and a two-compartment electrochemical reactor in the presence of a cation-exchange membrane (CEM) for the zinc recovery present in the spent pickling baths is analyzed in this paper under galvanostatic control. These solutions, which mainly contain ZnCl2 and FeCl2 in aqueous HCl media, come from the hot dip galvanizing industry. The effect of the applied current, the dilution factor of the baths and the presence or absence of initial cathodic zinc is also studied. For the 1:50 diluted spent bath, OCR experiments initially present higher values of the figures of merit than those obtained in the presence of the CEM since zinc is close to the cathode from the first electrolysis instants. However, at long electrolysis times, OCR presents zinc redissolution for all the current values tested due to the chlorine and iron presence close to the zinc deposits. In addition, the iron codeposition phenomenon is also observed in the OCR experiments when pH values are close to 2. On the other hand, CEM experiments become very similar to the OCR experiments at long time values since the CEM under these experimental conditions prevents zinc redissolution phenomenon and also iron codeposition. When the 1:50 diluted bath is concentred to 1:10, OCR experiments present the same tendency as that observed for the 1:50 dilution factor but the effect of zinc redissolution is increased due to the greater amount of chlorine generated in the anode. Under these experimental conditions, iron deposition has also been observed in the presence of the cation-exchange membrane as the rate of zinc deposition is greater than that of zinc transport through the membrane, and the zinc/iron ratio in the cathodic compartment is not high enough to prevent iron codeposition. In both cases, the pH values when iron codeposits with zinc are close to 2 and the zinc/iron ratio is below 0.6. The presence of initial zinc in the cathodic compartment of the electrochemical reactor enhances the reactor performance since it allows the zinc–iron separation in one single step and avoids the zinc redissolution phenomenon.The authors want to express their gratitude to the Generalitat Valenciana for a postgraduate grant (GV/2010/029) and to the Ministerio de Economia y Competitividad for financing the project number CTQ2012-37450-C02-01/PPQ.Carrillo Abad, J.; García Gabaldón, M.; Pérez Herranz, V. (2014). Treatment of spent pickling baths coming from hot dip galvanizing by means of an electrochemical membrane reactor. Desalination. 343:38-47. https://doi.org/10.1016/j.desal.2013.11.040S384734

    Effluents from the copper electrorefining as a secondary source of antimony: Role of mass transfer on the recovery by electrodeposition

    Get PDF
    The limited availability of antimony has increased the need for exploiting alternative sources to its direct extraction from stibnite deposits. Furthermore, introducing recovery techniques in industries where antimony is released in wastewaters leads to more responsible production routes. In this work, electrodeposition is employed to recover the antimony present in a secondary waste effluent of the copper electrorefining that is highly concentrated in hydrochloric acid. The electrochemical characterization of the system was conducted by voltammetry to identify a range of suitable operating conditions for the potentiostatic and galvanostatic electro-recovery of antimony. In potentiostatic mode, the progress of the secondary electrode reactions of hydrogen and chlorine evolution at potentials more cathodic than −0.38 V vs. Ag/AgCl causes the detachment and redissolution of the deposited antimony. Operating under galvanostatic control, similar effects were observed when the limiting current density is exceeded. Current efficiency and specific energy consumption values above 50 % and below 65 kW·h·kg−1, were achieved below the limiting current density (1.265 mA·cm−2). The operational range where electrodeposition of antimony is accelerated at increasing current densities can be broadened at intensified hydrodynamic conditions and higher concentrations of antimony. The detrimental effect of the hydrogen evolution reaction on the recovery of antimony decreases at high HCl concentrations

    Enhanced Atenolol oxidation by ferrites photoanodes grown on ceramic SnO2-Sb2O3 anodes

    Get PDF
    The increase in the consumption of pharmaceutical compounds has caused the increment of their presence in different body waters. β-blockers are one of the most dangerous even at low concentrations (ng L−1). Anodic oxidation with a boron-doped diamond (BDD) anode presents good results to remove these compounds. However, since this anode is expensive, some cheaper materials are under study. In this work, Sb-doped SnO2 ceramic anodes (BCE) coated with Zn or Cd ferrites, in order to provide photocatalytic properties, have been applied to the degradation of the Atenolol (ATL) β-blocker. Increasing the applied current increased ATL degradation and mineralization but caused a decrease in mineralization current efficiency (MCE) and an increase in energy consumption (ETOC). Additionally, light irradiation enhanced the ATL mineralization rate between 10% and 20% for both ferrites, although this increase was higher for the cadmium ferrite one. Finally, when the ferrites were compared with BDD and BCE anodes, the oxidizing power of the different anodic materials can be ordered as follows BDD> Cd-Fe> Zn-Fe> BCE. Therefore, both ferrites improved the BCE performance but only the cadmium one appeared as an alternative to the BDD, especially for MCE and ETOC, reaching values of 15% and 0.5 kWh gTOC−1, respectively

    Study of the chlorfenvinphos pesticide removal under different anodic materials and different reactor configuration

    Get PDF
    The present manuscript focuses on the study of the electrochemical oxidation of the insecticide Chlorfenvinphos (CVP). The assays were carried out under galvanostatic conditions using boron-doped diamond (BDD) and lowcost tin dioxide doped with antimony (Sb-doped SnO2) as anodes. The influence of the operating variables, such as applied current density, presence or absence of a cation-exchange membrane and concentration of supporting electrolyte, was discussed. The results revealed that the higher applied current density the higher degradation and mineralization of the insecticide for both anodes. The presence of the membrane and the highest concentration of Na2SO4 studied (0.1 M) as a supporting electrolyte benefited the oxidation process of CVP using the BDD electrode, while with the ceramic anode the elimination of CVP was lower under these experimental conditions. Although the BDD electrode showed the best performance, ceramic anodes appear as an interesting alternative as they were able to degrade CVP completely for the highest applied current density values. Toxicity tests revealed that the initial solution of CVP was more toxic than the samples treated with the ceramic electrode, while using the BDD electrode the toxicity of the sample increased

    Voltammetric and electrodeposition study for the recovery of antimony from effluents generated in the copper electrorefining process

    Get PDF
    Antimony is a metalloid with limited availability as a primary resource, but it is commonly found as an impurity in effluents generated in the copper metallurgy. Thus, the development of clean and selective processes to recover antimony from these wastewaters would improve the sustainability of the copper production. In this work, an emulated effluent of the copper electrorefining industry that contains antimony and hydrochloric acid was characterized by means of voltammetric and electrodeposition tests using two different cell configurations: a static cell, and a dynamic cell with a rotating disk electrode (RDE). Voltammograms were obtained at varying hydrochloric acid and antimony concentrations, inversion potentials, scan rates and RDE rotation rates. Two main conclusions were drawn: (a) the deposition of antimony is a mass transfer-controlled process; and (b) an increase in hydrochloric acid concentration improves the deposition of antimony. The diffusion coefficient of antimony species was obtained applying the Randles-ˇ Sevˇcík and the Levich equations; both of them providing very similar values (5.29 ± 0.20 ⋅ 10− 6 cm2 s − 1). The effective electrodeposition of antimony from highly concentrated hydrochloric acid solutions was demonstrated. The surface examination of the electrodes revealed that compact and adherent deposits of antimony could be obtained under operating conditions that minimize the hydrogen evolution reaction in both potentiostatic and galvanostatic modes. Intensified convective regimes by using the RDE improve the supply of dissolved antimony towards the electrode surface, thus leading to a notorious increase in current density and, consequently, in the rate of antimony deposition

    Recovery of zinc from spent pickling solutions using an electrochemical reactor in presence and absence of an anion-exchange membrane: Galvanostatic operation

    Full text link
    The performance of a one- and two-compartment electrochemical reactor under galvanostatic control for zinc recovery present in the spent pickling solutions is studied in this paper. These solutions, which mainly contain ZnCl 2 and FeCl 2 in aqueous HCl media, come from the hot dip galvanizing industry. The effect of the anion-exchange membrane (AEM) on the figures of merit of the electrochemical reactor is analyzed. In the absence of iron in solution, as the current value was shifted towards more negative values, the zinc fractional conversion increased because of the increase in the zinc reduction rate. However, the increase in current values made current efficiency decrease due to the hydrogen-reduction side reaction, which caused an increment in the specific energy consumption. The presence of iron in synthetic solutions led to a decrease in current efficiency associated with the reverse redox Fe 2+/Fe 3+ system and to the enhancement of the HER, which also induced increments in the local pH and the subsequent zinc redissolution. These adverse effects related to the presence of iron could be minimized by the interposition of an AEM. In this case, the zinc redissolution was eliminated which enabled zinc conversion values close to 100% together with higher current efficiencies as the consumption of current by the system Fe 2+/Fe 3+ was diminished. © 2012 Elsevier B.V. All rights reserved.Authors want to express their gratitude to the Universidad Politecnica de Valencia for the economic support in the Project Reference PAID-06-08, and to the Generalitat Valenciana for the financing of the Project Reference GV/2010/029.Carrillo Abad, J.; García Gabaldón, M.; Ortega Navarro, EM.; Pérez-Herranz, V. (2012). Recovery of zinc from spent pickling solutions using an electrochemical reactor in presence and absence of an anion-exchange membrane: Galvanostatic operation. Separation and Purification Technology. 98:366-374. https://doi.org/10.1016/j.seppur.2012.08.006S3663749

    Electrochemical recovery of zinc from the spent pickling baths coming from the hot dip galvanizing industry. Potentiostatic operation

    Full text link
    An electrochemical reactor was developed to recover zinc from the spent pickling solutions coming from the hot dip galvanizing industry. These solutions mainly contain ZnCl2 and FeCl2 in aqueous HCl media. The effect of the applied potential on the figures of merit (fractional conversion, current efficiency, space-time yield and specific energy consumption) of the electrochemical reactor was analysed. Voltammetric experiments were performed previously in order to select the optimum conditions to be applied in the electrolysis experiments. From the I-V curves it was inferred that bulk zinc deposition started from potential values more cathodic than -0.99 V. The hydrogen evolution reaction (HER) appeared from -0.45 V and masked the zinc cathodic peak C1, related to bulk zinc deposition, at high HCl concentrations. The presence of HCl inhibited iron deposition in synthetic samples. The additives present in the real baths, which diminish the massive hydrogen generation, allowed the observation of peak C1. The potential values to be applied in the electrolysis experiments were chosen from the voltammetric experiments and ranged between -1 V and -1.75 V. In the absence of iron in solution, as the electrode potential was shifted towards more negative values, the space-time yield of zinc and its fractional conversion increased because of the increase in the electrode roughness and the hydrogen turbulence-promoting action. Simultaneously, the specific energy consumption decreased initially due to the increase in the zinc conversion rate but decreased for the most cathodic potential value due to HER. The presence of iron in synthetic solutions led to a decrease in current efficiency associated with the reverse redox Fe 2+/Fe3+ system and to the enhancement of the HER, which also induced increments in the local pH and the subsequent zinc redissolution for the most cathodic potential values. On the contrary, the additives present in the real spent pickling baths avoided the adverse effects of iron, and zinc electrodeposition was possible even at high cathodic potential values. In fact, a potential value of -1.75 V was selected as the optimum since the conversion, the current efficiency and the space time yield obtained in the real baths were relatively high.Authors want to express their gratitude to the Universidad Politecnica de Valencia for the economical support in the project reference PAID-06-08, and to the Generalitat Valenciana for the financing of the project reference GV/2010/029.Carrillo Abad, J.; García Gabaldón, M.; Ortega Navarro, EM.; Pérez-Herranz, V. (2011). Electrochemical recovery of zinc from the spent pickling baths coming from the hot dip galvanizing industry. Potentiostatic operation. Separation and Purification Technology. 81(2):200-207. https://doi.org/10.1016/j.seppur.2011.07.029S20020781

    Recerca i tecnologia en enginyeria gràfica i disseny a la Universitat Politècnica de Catalunya

    Get PDF
    Els temps canvien cada vegada més ràpidament, i a la universitat això encara es nota més. L’històric departament d‘Expressió Gràfica a l’Enginyeria (EGE) de la Universitat Politècnica de Catalunya, garant d’una docència de Grau, Màster i Doctorat de qualitat i adaptada a les necessitats de la societat, emprèn l’any 2020 amb una proposta de canvi de nom per adaptar-se al nous coneixements que estan esdevenint la seva matèria principal, al voltant de l’enginyeria gràfica i el disseny. Les àrees de recerca del centenar de professors que formen el departament són àmplies i variades, i sempre en col·laboració en diversos grups tant de la pròpia UPC com d’altres universitats. Una recerca avançada, de caràcter pluridisciplinari, on s'apliquen creativitat i innovació com a eines de coneixement, implicats en un territori ampli, i situats als diferents campus de la UPC. En els capítols d’aquest llibre podeu veure una petita mostra d’aquesta recerca tecnològica en camps ben variats.Postprint (published version

    Electrochemical study of gold recovery from ammoniacal thiosulfate, simulating the PCBs leaching of mobile phones

    Full text link
    [EN] The high volume of sales and the high degree of obsolescence of mobile phones, together with the reduction of the natural reserves of the metals used in the composition of their printed circuit boards (PCBs), makes the recycling of these devices economically and environmentally attractive. Moreover, the search for the reduction of toxicity levels inherent to the gold leaching processes with alternatives to cyanide, such as thiosulfate is a priority. Thus, it is necessary to search for efficient alternatives for the recovery of gold from solutions containing thiosulfate, in the presence of copper, used in the leaching of PCBs of mobile phones. One of these alternatives could be the electrochemical recovery of the metals present in solution. Thus, this study aimed to verify some variables involved in the process of recovery of gold and copper and to determine the electrochemical yield obtained for these solutions. Initially, cyclic scanning voltammetry with a rotating disk electrode (RDE) was performed to verify the electrochemical behavior of gold and copper in solution. Then, electrowinning tests were used to determine the recovery rates of these metals and to calculate the yield obtained in the process. The results showed that this electrochemical reaction is mass transport controlled, which allowed the calculation of the diffusion coefficients of the metal in solution. In real solutions, the gold fraction recovered reached a 94%, and the copper fraction recovered was 95%, applying electrode potential values of -500 mV(Ag/AgCl) and -700 mV(Ag/AgCl), respectively. The current efficiency for the gold electrowinning achieved in the experiments was lower than 3%. (c) 2017 Elsevier Ltd. All rights reserved.The authors would like to thank the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) from Brazil for financial support.Kasper, AC.; Veit, HM.; García Gabaldón, M.; Pérez-Herranz, V. (2018). Electrochemical study of gold recovery from ammoniacal thiosulfate, simulating the PCBs leaching of mobile phones. Electrochimica Acta. 259:500-509. https://doi.org/10.1016/j.electacta.2017.10.161S50050925
    corecore