8 research outputs found

    A brief historical and evolutionary perspective on the origin of cellular microbiology research

    No full text
    Integrated with both a historical perspective and an evolutionary angle, this opinion article presents a brief and personal view of the emergence of cellular microbiology research. From the very first observations of phagocytosis by Goeze in 1777 to the exhaustive analysis of the cellular defence mechanisms performed in modern laboratories, the studies by cell biologists and microbiologists have converged into an integrative research field distinct from, but fully coupled to immunity: cellular microbiology. In addition, this brief article is thought as a humble patchwork of the motivations that have guided the research in my group over a quarter century

    ESCRT and autophagy cooperate to repair ESX-1-dependent damage to the Mycobacterium-containing vacuole

    No full text
    Phagocytes capture invader microbes within the bactericidal phagosome. Some pathogens subvert killing by damaging and escaping from this compartment. To prevent and fight bacterial escape, cells contain and repair the membrane damage, or finally eliminate the cytosolic escapees. All eukaryotic cells engage highly conserved mechanisms to ensure integrity of membranes in a multitude of physiological and pathological situations, including the Endosomal Sorting Complex Required for Transport (ESCRT) and autophagy machineries. In , recruitment of the ESCRT-III protein Snf7/Chmp4/Vps32 and the ATPase Vps4 to sites of membrane repair relies on the ESCRT-I component Tsg101 and occurs in absence of Ca . The ESX-1 dependent membrane perforations produced by the pathogen separately engage both ESCRT and autophagy. In absence of Tsg101, escapes earlier to the cytosol, where it is restricted by xenophagy. We propose that ESCRT has an evolutionary conserved function in containing intracellular pathogens in intact compartments

    The ESCRT and autophagy machineries cooperate to repair ESX-1-dependent damage at the Mycobacterium-containing vacuole but have opposite impact on containing the infection

    Get PDF
    Phagocytic cells capture and kill most invader microbes within the bactericidal phagosome, but some pathogens subvert killing by damaging the compartment and escaping to the cytosol. To prevent the leakage of pathogen virulence and host defence factors, as well as bacteria escape, host cells have to contain and repair the membrane damage, or finally eliminate the cytosolic bacteria. All eukaryotic cells engage various repair mechanisms to ensure plasma membrane integrity and proper compartmentalization of organelles, including the Endosomal Sorting Complex Required for Transport (ESCRT) and autophagy machineries. We show that during infection of Dictyostelium discoideum with Mycobacterium marinum, the ESCRT-I component Tsg101, the ESCRT-III protein Snf7/Chmp4/Vps32 and the AAA-ATPase Vps4 are recruited to sites of damage at the Mycobacterium-containing vacuole. Interestingly, damage separately recruits the ESCRT and the autophagy machineries. In addition, the recruitment of Vps32 and Vps4 to repair sterile membrane damage depends on Tsg101 but appears independent of Ca2+. Finally, in absence of Tsg101, M. marinum accesses prematurely the cytosol, where the autophagy machinery restricts its growth. We propose that ESCRT has an evolutionary conserved function to repair small membrane damage and to contain intracellular pathogens in intact compartments

    Effect of the luteinizing hormone on embryo production in superovulated rabbit does

    Full text link
    peer reviewedaudience: researcher, professional, student, popularizationFor most domestic animals, the responses to superovulation treatments are not controlled as a consequence of the lack of knowledge on exogenous gonadotrophins effects on the ovarian function. The role of luteinizing hormone (LH) on the number and quality of embryos produced was evaluated on rabbit does superovulated with porcine FSH (pFSH). Parameters of embryos recovery, in vitro and in vivo embryo development rates after freezing/thawing were compared. We used three experimental groups: (1) control group without superovulation treatment, (2) "pFSH + pLH" and (3) "pFSH" groups where females were treated with pFSH, respectively, with (20%) or without (0%) porcine LH supplementation. The number of corpora lutea and the number of embryos produced were significantly higher (p < 0.001) in superovulated does than in control group (27.1, 26.7 versus 11.9 corpora lutea and 20.3, 21.2 versus 9.6 embryos produced for pFSH + pLH, pFSH and control group, respectively). However, both gonadotrophins administrations (groups 2 and 3) led to defaults of ovulation when compared with untreated does. No significant difference was observed between the number and quality of the embryos produced by does treated with pFSH + pLH or with pFSH alone. Moreover, we observed no significant difference between results of in vivo and in vitro viability assays after thawing. We concluded that pFSH alone seems to be sufficient to stimulate the follicles growth and that exogenous pLH administrated has no effect on the quantity and quality of embryos. Further studies are needed to evaluate the hormonal patterns before and after the gonadotrophins injections in the rabbit species. (c) 2007 Elsevier Inc. All rights reserved

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    C. Literaturwissenschaft.

    No full text
    corecore