114 research outputs found

    A non-redundant role for OX40 in the competitive fitness of Treg in response to IL-2.

    Get PDF
    OX40 stimulation is known to enhance activation of effector T cells and to inhibit induction and suppressive function of Treg. Here we uncovered a novel role of OX40 in sustaining Treg competitive fitness in vivo, during repopulation of lymphopenic hosts and reconstitution of BM chimeras. Defective expansion of OX40-null Treg diminished their ability to suppress inflammation in a model of lymphopenia-driven colitis. OX40-mediated promotion of Treg fitness spanned beyond lymphopenic environments, as endogenous Treg in OX40-null mice showed decreased accumulation during thymic development, enhanced susceptibility to antibody-mediated depletion and defective turnover following thymectomy. In vitro, OX40-deficient Treg were found to be intrinsically hyporesponsive to IL-2, in terms of Stat5 phosphorylation and proliferation, according to elevated SOCS1 content and reduced miR155 expression. Therefore, OX40 is a key factor in shaping Treg sensitivity to IL-2 and promoting their proliferation and survival, toward accurate immune regulation

    Stakeholder attitudes to the regulation of traditional and complementary medicine professions: a systematic review

    Full text link
    Abstract Background There has been a considerable increase in the number of traditional and complementary medicine (T&amp;CM) practitioners over the past 20 years and in some jurisdictions are estimated to outnumber general practitioners. Despite this globally significant role, it is apparent that worldwide not all T&amp;CM professions operate under adequate accountability and regulatory oversight for maintaining public protection. To date there has been no published systematic examination of stakeholder opinions regarding regulated and unregulated T&amp;CM occupations. In response, this review aims to investigate, describe, and analyse attitudes held by a range of stakeholder groups towards the regulation of T&amp;CM professions. Methods A database search of AMED, CINAHL, Embase, Ovid MEDLINE, ProQuest, PsycINFO, PubMed, Scopus, and Google Scholar was conducted for original research published between 2000 and 2020 on stakeholder opinions regarding the regulation of T&amp;CM professions. Results Sixty studies across 15 countries reported on the views of six health care stakeholder groups: consumers, T&amp;CM practitioners, conventional medicine practitioners, professional associations, education providers, and policy-makers. Across all stakeholder groups there was between 15% and 95% (median 61%) support for, and 1% to 57% (median 14%) opposition to the regulation of various T&amp;CM professions. The main reasons for supporting regulation included providing greater public protection, raising training and practice standards, establishing title protection, and gaining acceptance from conventional medicine providers. Concerns regarding regulation included potential restrictions to practice, misappropriation of practice, and medical oversight of T&amp;CM practitioners. Few studies canvassed the views of professional associations (n = 6), education providers (n = 2), and policy-makers (n = 2). Conclusions There appears to be broad support for the regulation of T&amp;CM professions, although there was wide variation in attitudes as to how this should be applied. Further research, with a particular focus on policy-makers, education providers, and professional associations, is critical to inform appropriate health policy and practice recommendations relating to T&amp;CM professional regulation across jurisdictions. Systematic review registration: the a priori protocol for this systematic review was registered in PROSPERO and is available at: www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42020198767. </jats:sec

    Hematopoietic differentiation: a coordinated dynamical process towards attractor stable states

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The differentiation process, proceeding from stem cells towards the different committed cell types, can be considered as a trajectory towards an attractor of a dynamical process. This view, taking into consideration the transcriptome and miRNome dynamics considered as a whole, instead of looking at few 'master genes' driving the system, offers a novel perspective on this phenomenon. We investigated the 'differentiation trajectories' of the hematopoietic system considering a genome-wide scenario.</p> <p>Results</p> <p>We developed serum-free liquid suspension unilineage cultures of cord blood (CB) CD34<sup>+ </sup>hematopoietic progenitor cells through erythroid (E), megakaryocytic (MK), granulocytic (G) and monocytic (Mo) pathways. These cultures recapitulate physiological hematopoiesis, allowing the analysis of almost pure unilineage precursors starting from initial differentiation of HPCs until terminal maturation. By analyzing the expression profile of protein coding genes and microRNAs in unilineage CB E, MK, G and Mo cultures, at sequential stages of differentiation and maturation, we observed a coordinated, fully interconnected and scalable character of cell population behaviour in both transcriptome and miRNome spaces reminiscent of an attractor-like dynamics. MiRNome and transcriptome space differed for a still not terminally committed behaviour of microRNAs.</p> <p>Conclusions</p> <p>Consistent with their roles, the transcriptome system can be considered as the state space of a cell population, while the continuously evolving miRNA space corresponds to the tuning system necessary to reach the attractor. The behaviour of miRNA machinery could be of great relevance not only for the promise of reversing the differentiated state but even for tumor biology.</p

    The abrogation of the HOXB7/PBX2 complex induces apoptosis in melanoma through the miR-221&222-c-FOS pathway.

    Get PDF
    Cutaneous melanoma is the fastest increasing cancer worldwide. Although several molecular abnormalities have been associated with melanoma progression, the underlying mechanisms are still largely unknown and few targeted therapies are under evaluation. Here we show that the HOXB7/PBX2 dimer acts as a positive transcriptional regulator of the oncogenic microRNA-221 and -222. In addition, demonstrating c-FOS as a direct target of miR-221&222, we identify a HOXB7/PBX2→miR-221&222 →c-FOS regulatory link, whereby the abrogation of functional HOXB7/PBX2 dimers leads to reduced miR-221&222 transcription and elevated c-FOS expression with consequent cell death. Taking advantage of the treatment with the peptide HXR9, an antagonist of HOX/PBX dimerization, we recognize miR-221&222 as effectors of its action, in turn confirming the HXR9 efficacy in the treatment of human melanoma malignancy, whilst sparing normal human melanocytes. Our findings, besides suggesting the potential therapeutic of HXR9 or its derivatives in malignant melanoma, suggest the disruption of the HOXB7/PBX2 complexes, miR-221&222 inhibition or even better their combination, as innovative therapeutic approaches

    Stromal SPARC contributes to the detrimental fibrotic changes associated with myeloproliferation whereas its deficiency favors myeloid cell expansion.

    Get PDF
    In myeloid malignancies, the neoplastic clone outgrows normal hematopoietic cells toward BM failure. This event is also sustained by detrimental stromal changes, such as BM fibrosis and osteosclerosis, whose occurrence is harbinger of a dismal prognosis. We show that the matricellular protein SPARC contributes to the BM stromal response to myeloproliferation. The degree of SPARC expression in BM stromal elements, including CD146(+) mesenchymal stromal cells, correlates with the degree of stromal changes, and the severity of BM failure characterizing the prototypical myeloproliferative neoplasm primary myelofibrosis. Using Sparc(-/-) mice and BM chimeras, we demonstrate that SPARC contributes to the development of significant stromal fibrosis in a model of thrombopoietin-induced myelofibrosis. We found that SPARC deficiency in the radioresistant BM stroma compartment impairs myelofibrosis but, at the same time, associates with an enhanced reactive myeloproliferative response to thrombopoietin. The link betwen SPARC stromal deficiency and enhanced myeloid cell expansion under a myeloproliferative spur is also supported by the myeloproliferative phenotype resulting from the transplantation of defective Apc(min) mutant hematopoietic cells into Sparc(-/-) but not WT recipient BM stroma. Our results highlight a complex influence of SPARC over the stromal and hematopoietic BM response in myeloproliferative conditions

    Acidic microenvironment plays a key role in human melanoma progression through a sustained exosome mediated transfer of clinically relevant metastatic molecules

    Get PDF
    Background: Microenvironment cues involved in melanoma progression are largely unknown. Melanoma is highly influenced in its aggressive phenotype by the changes it determinates in its microenvironment, such as pH decrease, in turn influencing cancer cell invasiveness, progression and tissue remodelling through an abundant secretion of exosomes, dictating cancer strategy to the whole host. A role of exosomes in driving melanoma progression under microenvironmental acidity was never described. Methods: We studied four differently staged human melanoma lines, reflecting melanoma progression, under microenvironmental acidic pHs pressure ranging between pH 6.0-6.7. To estimate exosome secretion as a function of tumor stage and environmental pH, we applied a technique to generate native fluorescent exosomes characterized by vesicles integrity, size, density, markers expression, and quantifiable by direct FACS analysis. Functional roles of exosomes were tested in migration and invasion tests. Then we performed a comparative proteomic analysis of acid versus control exosomes to elucidate a specific signature involved in melanoma progression. Results: We found that metastatic melanoma secretes a higher exosome amount than primary melanoma, and that acidic pH increases exosome secretion when melanoma is in an intermediate stage, i.e. metastatic non-invasive. We were thus able to show that acidic pH influences the intercellular cross-talk mediated by exosomes. In fact when exposed to exosomes produced in an acidic medium, pH naĂŻve melanoma cells acquire migratory and invasive capacities likely due to transfer of metastatic exosomal proteins, favoring cell motility and angiogenesis. A Prognoscan-based meta-analysis study of proteins enriched in acidic exosomes, identified 11 genes (HRAS, GANAB, CFL2, HSP90B1, HSP90AB1, GSN, HSPA1L, NRAS, HSPA5, TIMP3, HYOU1), significantly correlating with poor prognosis, whose high expression was in part confirmed in bioptic samples of lymph node metastases. Conclusions: A crucial step of melanoma progression does occur at melanoma intermediate -stage, when extracellular acidic pH induces an abundant release and intra-tumoral uptake of exosomes. Such exosomes are endowed with pro-invasive molecules of clinical relevance, which may provide a signature of melanoma advancement

    AP2α controls the dynamic balance between miR-126&126∗ and miR-221&222 during melanoma progression

    Get PDF
    Accumulating evidences have shown the association between aberrantly expressed microRNAs (miRs) and cancer, where these small regulatory RNAs appear to dictate the cell fate by regulating all the main biological processes. We demonstrated the responsibility of the circuitry connecting the oncomiR-221&222 with the tumor suppressors miR-126&126∗ in melanoma development and progression. According to the inverse correlation between endogenous miR-221&222 and miR-126&126∗, respectively increasing or decreasing with malignancy, their enforced expression or silencing was sufficient for a reciprocal regulation. In line with the opposite roles of these miRs, protein analyses confirmed the reverse expression pattern of miR-126&126∗-targeted genes that were induced by miR-221&222. Looking for a central player in this complex network, we revealed the dual regulation of AP2α, on one side directly targeted by miR-221&222 and on the other a transcriptional activator of miR-126&126∗. We showed the chance of restoring miR-126&126∗ expression in metastatic melanoma to reduce the amount of mature intracellular heparin-binding EGF like growth factor, thus preventing promyelocytic leukemia zinc finger delocalization and maintaining its repression on miR-221&222 promoter. Thus, the low-residual quantity of these two miRs assures the release of AP2α expression, which in turn binds to and induces miR-126&126∗ transcription. All together these results point to an unbalanced ratio functional to melanoma malignancy between these two couples of miRs. During progression this balance gradually moves from miR-126&126∗ toward miR-221&222. This circuitry, besides confirming the central role of AP2α in orchestrating melanoma development and/or progression, further displays the significance of these miRs in cancer and the option of utilizing them for novel therapeutics

    Gene expression profiling in whole blood of patients with coronary artery disease

    Get PDF
    Owing to the dynamic nature of the transcriptome, gene expression profiling is a promising tool for discovery of disease-related genes and biological pathways. In the present study, we examined gene expression in whole blood of 12 patients with CAD (coronary artery disease) and 12 healthy control subjects. Furthermore, ten patients with CAD underwent whole-blood gene expression analysis before and after the completion of a cardiac rehabilitation programme following surgical coronary revascularization. mRNA and miRNA (microRNA) were isolated for expression profiling. Gene expression analysis identified 365 differentially expressed genes in patients with CAD compared with healthy controls (175 up- and 190 down-regulated in CAD), and 645 in CAD rehabilitation patients (196 up- and 449 down-regulated post-rehabilitation). Biological pathway analysis identified a number of canonical pathways, including oxidative phosphorylation and mitochondrial function, as being significantly and consistently modulated across the groups. Analysis of miRNA expression revealed a number of differentially expressed miRNAs, including hsa-miR-140-3p (control compared with CAD, P=0.017), hsa-miR-182 (control compared with CAD, P=0.093), hsa-miR-92a and hsa-miR-92b (post- compared with pre-exercise, P<0.01). Global analysis of predicted miRNA targets found significantly reduced expression of genes with target regions compared with those without: hsa-miR-140-3p (P=0.002), hsa-miR-182 (P=0.001), hsa-miR-92a and hsa-miR-92b (P=2.2×10−16). In conclusion, using whole blood as a ‘surrogate tissue’ in patients with CAD, we have identified differentially expressed miRNAs, differentially regulated genes and modulated pathways which warrant further investigation in the setting of cardiovascular function. This approach may represent a novel non-invasive strategy to unravel potentially modifiable pathways and possible therapeutic targets in cardiovascular disease

    A common polymorphism of the human cardiac sodium channel alpha subunit (SCN5A) gene is associated with sudden cardiac death in chronic ischemic heart disease

    Get PDF
    Cardiac death remains one of the leading causes of mortality worldwide. Recent research has shed light on pathophysiological mechanisms underlying cardiac death, and several genetic variants in novel candidate genes have been identified as risk factors. However, the vast majority of studies performed so far investigated genetic associations with specific forms of cardiac death only (sudden, arrhythmogenic, ischemic etc.). The aim of the present investigation was to find a genetic marker that can be used as a general, powerful predictor of cardiac death risk. To this end, a case-control association study was performed on a heterogeneous cohort of cardiac death victims (n=360) and age-matched controls (n=300). Five single nucleotide polymorphisms (SNPs) from five candidate genes (beta2 adrenergic receptor, nitric oxide synthase 1 adaptor protein, ryanodine receptor 2, sodium channel type V alpha subunit and transforming growth factor-beta receptor 2) that had previously been shown to associate with certain forms of cardiac death were genotyped using sequence-specific real-time PCR probes. Logistic regression analysis revealed that the CC genotype of the rs11720524 polymorphism in the SCN5A gene encoding a subunit of the cardiac voltage-gated sodium channel occurred more frequently in the highly heterogeneous cardiac death cohort compared to the control population (p=0.019, odds ratio: 1.351). A detailed subgroup analysis uncovered that this effect was due to an association of this variant with cardiac death in chronic ischemic heart disease (p=0.012, odds ratio =1.455). None of the other investigated polymorphisms showed association with cardiac death in this context. In conclusion, our results shed light on the role of this non-coding polymorphism in cardiac death in ischemic cardiomyopathy. Functional studies are needed to explore the pathophysiological background of this association. © 2015 Marcsa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
    • 

    corecore