8 research outputs found

    Carbon dioxide fluxes of tundra vegetation communities on an esker top in the low-Arctic

    Get PDF
    Previous studies have shown that carbon dioxide fluxes vary considerably among Arctic environments and it is important to assess these differences in order to develop our understanding of the role of Arctic tundra in the global carbon cycle. Although many previous studies have examined tundra carbon dioxide fluxes, few have concentrated on elevated terrain (hills and ridge tops) that is exposed to harsh environmental conditions resulting in sparse vegetation cover and seemingly low productivity. In this study we measured carbon dioxide (CO2) exchange of four common tundra communities on the crest of an esker located in the central Canadian low-Arctic. The objectives were to quantify and compare CO2 fluxes from these communities, investigate responses to environmental variables and qualitatively compare fluxes with those from similar communities growing in less harsh lowland tundra environments. Measurements made during July and August 2010 show there was little difference in net ecosystem exchange (NEE) and gross ecosystem production (GEP) among the three deciduous shrub communities, Arctous alpina, Betula glandulosa and Vaccinium uliginosum, with means ranging from −4.09 to −6.57 ÎŒmol·m−2·s−1 and −7.92 to −9.24 ÎŒmol·m−2·s−1, respectively. Empetrum nigrum communities had significantly smaller mean NEE and GEP (−1.74 and −4.08 ÎŒmol·m−2·s−1, respectively). Ecosystem respiration (ER) was similar for all communities (2.56 to 3.03 ÎŒmol·m−2·s−1), except the B. glandulosa community which had a larger mean flux (4.66 ÎŒmol·m−2·s−1). Overall, fluxes for these esker-top communities were near the upper range of fluxes reported for other tundra communities. ER was related to soil temperature in all of the communities. Only B. glandulosa GEP and ER showed sensitivity to a persistent decline in soil moisture throughout the study. These findings may have important implications for how esker tops would be treated in construction of regional carbon budgets and for predicting the impacts of climate change on Arctic tundra future carbon budgets

    Landscape-scale variability in soil organic carbon storage in the central Canadian Arctic

    No full text
    Arctic soils constitute a vast, but poorly quantified, pool of soil organic carbon (SOC). The uncertainty associated with pan-Arctic SOC storage estimates - a result of limited SOC and land cover data - needs to be reduced if we are to better predict the impact of future changes to Arctic carbon stocks resulting from climate warming. In this study landscape-scale variability in SOC at a Southern Arctic Ecozone site in the central Canadian Arctic was investigated with the ultimate goal of up-scaling SOC estimates with a land cover classification system. Total SOC was estimated to depths of 30 cm and 50 cm for 76 soil pits, together representing eight different vegetation communities in seven different broad landscape units. Soil organic carbon to 50 cm was lowest for the xerophytic herb community in the esker complex landscape unit (7.2±2.2 SD kg m-2) and highest in the birch hummock terrain in the lowland tundra landscape unit (36.4±2.8 kg m-2), followed by wet sedge and dry sedge communities in the wetland complex (29.8±9.9 and 22.0±2.0 kg m-2, respectively). The up-scaled estimates of mean SOC for the study area (excluding water) were 15.8 kg m-2 (to 50 cm) and 11.6 kg m-2 (to 30 cm). On a landscape scale, soil moisture content was found to have an important influence on SOC variability. Overall, this study highlights the importance of SOC variability at fine scales and its impact on up-scaling SOC in Arctic landscapes

    UBR7 functions with UBR5 in the Notch signaling pathway and is involved in a neurodevelopmental syndrome with epilepsy, ptosis, and hypothyroidism

    No full text
    The ubiquitin-proteasome system facilitates the degradation of unstable or damaged proteins. UBR1-7, which are members of hundreds of E3 ubiquitin ligases, recognize and regulate the half-life of specific proteins on the basis of their N-terminal sequences ("N-end rule"). In seven individuals with intellectual disability, epilepsy, ptosis, hypothyroidism, and genital anomalies, we uncovered bi-allelic variants in UBR7. Their phenotype differs significantly from that of Johanson-Blizzard syndrome (JBS), which is caused by bi-allelic variants in UBR1, notably by the presence of epilepsy and the absence of exocrine pancreatic insufficiency and hypoplasia of nasal alae. While the mechanistic etiology of JBS remains uncertain, mutation of both Ubr1 and Ubr2 in the mouse or of the C. elegans UBR5 ortholog results in Notch signaling defects. Consistent with a potential role in Notch signaling, C. elegans ubr-7 expression partially overlaps with that of ubr-5, including in neurons, as well as the distal tip cell that plays a crucial role in signaling to germline stem cells via the Notch signaling pathway. Analysis of ubr-5 and ubr-7 single mutants and double mutants revealed genetic interactions with the Notch receptor gene glp-1 that influenced development and embryo formation. Collectively, our findings further implicate the UBR protein family and the Notch signaling pathway in a neurodevelopmental syndrome with epilepsy, ptosis, and hypothyroidism that differs from JBS. Further studies exploring a potential role in histone regulation are warranted given clinical overlap with KAT6B disorders and the interaction of UBR7 and UBR5 with histones

    Auditory, Somatosensory, and Multisensory Insular Cortex in the Rat

    No full text
    Compared with other areas of the forebrain, the function of insular cortex is poorly understood. This study examined the unisensory and multisensory function of the rat insula using high-resolution, whole-hemisphere, epipial evoked potential mapping. We found the posterior insula to contain distinct auditory and somatotopically organized somatosensory fields with an interposed and overlapping region capable of integrating these sensory modalities. Unisensory and multisensory responses were uninfluenced by complete lesioning of primary and secondary auditory and somatosensory cortices, suggesting a high degree of parallel afferent input from the thalamus. In light of the established connections of the posterior insula with the amygdala, we propose that integration of auditory and somatosensory modalities reported here may play a role in auditory fear conditioning

    Stress reduction correlates with structural changes in the amygdala

    No full text
    Stress has significant adverse effects on health and is a risk factor for many illnesses. Neurobiological studies have implicated the amygdala as a brain structure crucial in stress responses. Whereas hyperactive amygdala function is often observed during stress conditions, cross-sectional reports of differences in gray matter structure have been less consistent. We conducted a longitudinal MRI study to investigate the relationship between changes in perceived stress with changes in amygdala gray matter density following a stress-reduction intervention. Stressed but otherwise healthy individuals (N = 26) participated in an 8-week mindfulness-based stress reduction intervention. Perceived stress was rated on the perceived stress scale (PSS) and anatomical MR images were acquired pre- and post-intervention. PSS change was used as the predictive regressor for changes in gray matter density within the bilateral amygdalae. Following the intervention, participants reported significantly reduced perceived stress. Reductions in perceived stress correlated positively with decreases in right basolateral amygdala gray matter density. Whereas prior studies found gray matter modifications resulting from acquisition of abstract information, motor and language skills, this study demonstrates that neuroplastic changes are associated with improvements in a psychological state variable

    Elucidating the clinical and molecular spectrum of SMARCC2-associated NDD in a cohort of 65 affected individuals

    No full text
    Purpose: Coffin-Siris and Nicolaides-Baraitser syndromes, are recognisable neurodevelopmental disorders caused by germline variants in BAF complex subunits. The SMARCC2 BAFopathy was recently reported. Herein, we present clinical and molecular data on a large cohort. Methods: Clinical symptoms for 41 novel and 24 previously published affected individuals were analyzed using the Human Phenotype Ontology. For genotype-phenotype correlation, molecular data were standardized and grouped into non-truncating and likely gene-disrupting (LGD) variants. Missense variant protein expression and BAF subunit interactions were examined using 3D protein modeling, co-immunoprecipitation, and proximity-ligation assays. Results: Neurodevelopmental delay with intellectual disability, muscular hypotonia and behavioral disorders were the major manifestations. Clinical hallmarks of BAFopathies were rare. Clinical presentation differed significantly, with LGD variants being predominantly inherited and associated with mildly reduced or normal cognitive development, while non-truncating variants were mostly de novo and presented with severe developmental delay. These distinct manifestations and non-truncating variant clustering in functional domains suggest different pathomechanisms. In vitro testing showed decreased protein expression for N-terminal missense variants similar to LGD. Conclusion: This study improved SMARCC2 variant classification and identified discernible SMARCC2-associated phenotypes for LGD and non-truncating variants, which were distinct from other BAFopathies. The pathomechanism of most non-truncating variants has yet to be investigated
    corecore