65 research outputs found

    Parameter estimation from measurements along quantum trajectories

    Full text link
    The dynamics of many open quantum systems are described by stochastic master equations. In the discrete-time case, we recall the structure of the derived quantum filter governing the evolution of the density operator conditioned to the measurement outcomes. We then describe the structure of the corresponding particle quantum filters for estimating constant parameter and we prove their stability. In the continuous-time (diffusive) case, we propose a new formulation of these particle quantum filters. The interest of this new formulation is first to prove stability, and also to provide an efficient algorithm preserving, for any discretization step-size, positivity of the quantum states and parameter classical probabilities. This algorithm is tested on experimental data to estimate the detection efficiency for a superconducting qubit whose fluorescence field is measured using a heterodyne detector.Comment: 8 pages, 3 figures, submitte

    Quantum state tomography with non-instantaneous measurements, imperfections and decoherence

    Get PDF
    Tomography of a quantum state is usually based on positive operator-valued measure (POVM) and on their experimental statistics. Among the available reconstructions, the maximum-likelihood (MaxLike) technique is an efficient one. We propose an extension of this technique when the measurement process cannot be simply described by an instantaneous POVM. Instead, the tomography relies on a set of quantum trajectories and their measurement records. This model includes the fact that, in practice, each measurement could be corrupted by imperfections and decoherence, and could also be associated with the record of continuous-time signals over a finite amount of time. The goal is then to retrieve the quantum state that was present at the start of this measurement process. The proposed extension relies on an explicit expression of the likelihood function via the effective matrices appearing in quantum smoothing and solutions of the adjoint quantum filter. It allows to retrieve the initial quantum state as in standard MaxLike tomography, but where the traditional POVM operators are replaced by more general ones that depend on the measurement record of each trajectory. It also provides, aside the MaxLike estimate of the quantum state, confidence intervals for any observable. Such confidence intervals are derived, as the MaxLike estimate, from an asymptotic expansion of multi-dimensional Laplace integrals appearing in Bayesian Mean estimation. A validation is performed on two sets of experimental data: photon(s) trapped in a microwave cavity subject to quantum non-demolition measurements relying on Rydberg atoms; heterodyne fluorescence measurements of a superconducting qubit.Comment: 11 pages, 4 figures, submitte

    Ten years of ecosystem services matrix: Review of a (r)evolution

    Get PDF
    With the Ecosystem Service (ES) concept's popularisation, the need for robust and practical methodologies for ES assessments has increased. The ES matrix approach, linking ecosystem types or other geospatial units with ES in easy-to-apply lookup tables, was first developed ten years ago and, since then, has been broadly used. Whereas detailed methodological guidelines can be found in literature, the ES matrix approach seems to be often used in a quick (and maybe even "quick and dirty”) way. Based on a reviewa of scientific publications, in which the ES matrix approach was used, we present the diversity of application contexts, highlight trends of uses and propose future recommendations for improved applications of the ES matrix. A total of 109 studies applying the ES matrix approach and one methodological study without concrete applications were considered for the review. Amongst the main patterns observed, the ES matrix approach allows the assessment of a higher number of ES than other ES assessment methods. ES can be jointly assessed with indicators for ecosystem condition and biodiversity in the ES matrix. Although the ES matrix allows us consider many data sources to achieve the assessment scores for the individual ES, in the reviewed studies, these were mainly used together with expert-based scoring (73%) and/or ES scores that were based on an already-published ES matrix or deduced by information found in related scientific publications (51%). We must acknowledge that 27% of the studies did not clearly explain their methodology. This points out a lack of method elucidation on how the data had been used and where the scores came from. Although some studies addressed the need to consider variabilities and uncertainties in ES assessments, only a minority of studies (15%) did so. Our review shows that, in 29% of the studies, an already-existing matrix was used as an initial matrix for the assessment (mainly the same matrix from one of the Burkhard et al. papers). In 16% of the reviewed studies, no other data were used for the matrix scores or no adaptation of the existing matrix used was made. However, the actual idea of the ES scores, included in the Burkhard et al.'s matrices published 10 years ago, was to provide some examples and give inspiration for one's own studies. Therefore, we recommend to use only scores assessed for a specific study or, if one wishes to use pre-existing scores from another study, to revise them in depth, taking into account the local context of the new assessment. We also recommend to systematically report and consider variabilities and uncertainties in each ES assessment. We emphasise the need for all scientific studies to describe clearly and extensively the whole methodology used to score or evaluate ES in order to be able to rate the quality of the scores obtained. In conclusion, the application of the ES matrix has to become more transparent and integrate more variability analyses. The increasing number of studies that use the ES matrix approach confirms its success, appropriability, flexibility and utility for decision-making, as well as its ability to increase awareness of ES

    Mapping and assessing ecosystems and their services: a comparative approach to ecosystem service supply in Suriname and French Guiana

    Get PDF
    Current environmental resource management policies acknowledge the need to manage and conserve biodiversity. Sustaining good ecosystem conditions and ecosystem services (ES) is imperative at and across multiple spatial scales. The ES concept is a valuable tool to communicate the benefits that nature provides to people. In the Guiana Shield, neighbouring countries share landscapes and ecosystems, and therefore also the services they supply. This study presents the first spatial ES assessments at territorial level for Suriname and French Guiana. Expert-based ES supply matrices were used and analysed in combination with Land Use/Land Cover (LULC) data to compile ES capacity maps for the two territories. In comparison, both ES supply matrices showed a high degree of similarity–forest ecosystems scored the highest ES capacities, followed by aquatic and marine ecosystems. Agricultural and urban land cover showed weak to moderate capacities for ES supply. A statistical analysis revealed a 30% difference of the two matrix assessments. Expert scores given for ES in Suriname exceeded those in French Guiana, especially for urban LULC and planted forests. Sociodemographic factors such as age, gender and institutional environment were analysed to explain this difference. The diverging scores can also be attributed to the distribution and the degree of similarity of the different LULC types and, hence, ES capacities and different governance and institutional contexts of the assessments. Comparative evaluations are essential to understand the differences in perception of ES supply capacities and to underpin future knowledge-based bilateral conservation policies and funding decisions by governments and managers

    Persistent control of a superconducting qubit by stroboscopic measurement feedback

    Get PDF
    Making a system state follow a prescribed trajectory despite fluctuations and errors commonly consists in monitoring an observable (temperature, blood-glucose level...) and reacting on its controllers (heater power, insulin amount ...). In the quantum domain, there is a change of paradigm in feedback since measurements modify the state of the system, most dramatically when the trajectory goes through superpositions of measurement eigenstates. Here, we demonstrate the stabilization of an arbitrary trajectory of a superconducting qubit by measurement based feedback. The protocol benefits from the long coherence time (T2>10μT_2>10 \mus) of the 3D transmon qubit, the high efficiency (82%) of the phase preserving Josephson amplifier, and fast electronics ensuring less than 500 ns delay. At discrete time intervals, the state of the qubit is measured and corrected in case an error is detected. For Rabi oscillations, where the discrete measurements occur when the qubit is supposed to be in the measurement pointer states, we demonstrate an average fidelity of 85% to the targeted trajectory. For Ramsey oscillations, which does not go through pointer states, the average fidelity reaches 75%. Incidentally, we demonstrate a fast reset protocol allowing to cool a 3D transmon qubit down to 0.6% in the excited state.Comment: 7 pages, 3 figures and 1 table. Supplementary information available as an ancilla fil

    Beam shaping to enhance zero group velocity Lamb mode generation in a composite plate and nondestructive testing application

    Get PDF
    International audienceZero group velocity (ZGV) Lamb modes have already shown their potential in nondestructive testing applications as they are sensitive to the sample structural characteristics. In this paper, we first consider an aluminum sample to validate a method based on the beam shaping of the generation laser. This method is proven to enhance ZGV Lamb modes in aluminum, and then advantageously applied to a composite material plate. Finally, based on the proposed method, scanning the sample over healthy and flawed zones demonstrates the ability to detect subsurface flaws

    Applications of Laser-Ultrasonics and Laser Tapping to Aerospace Composite Structures

    Get PDF
    Peer reviewed: YesNRC publication: Ye
    corecore