3,025 research outputs found

    Bimodules over Cartan MASAs in von Neumann Algebras, Norming Algebras, and Mercer's Theorem

    Get PDF
    In a 1991 paper, R. Mercer asserted that a Cartan bimodule isomorphism between Cartan bimodule algebras A_1 and A_2 extends uniquely to a normal *-isomorphism of the von Neumann algebras generated by A_1 and A_2 [13, Corollary 4.3]. Mercer's argument relied upon the Spectral Theorem for Bimodules of Muhly, Saito and Solel [15, Theorem 2.5]. Unfortunately, the arguments in the literature supporting [15, Theorem 2.5] contain gaps, and hence Mercer's proof is incomplete. In this paper, we use the outline in [16, Remark 2.17] to give a proof of Mercer's Theorem under the additional hypothesis that the given Cartan bimodule isomorphism is weak-* continuous. Unlike the arguments contained in [13, 15], we avoid the use of the Feldman-Moore machinery from [8]; as a consequence, our proof does not require the von Neumann algebras generated by the algebras A_i to have separable preduals. This point of view also yields some insights on the von Neumann subalgebras of a Cartan pair (M,D), for instance, a strengthening of a result of Aoi [1]. We also examine the relationship between various topologies on a von Neumann algebra M with a Cartan MASA D. This provides the necessary tools to parametrize the family of Bures-closed bimodules over a Cartan MASA in terms of projections in a certain abelian von Neumann algebra; this result may be viewed as a weaker form of the Spectral Theorem for Bimodules, and is a key ingredient in the proof of our version of Mercer's theorem. Our results lead to a notion of spectral synthesis for weak-* closed bimodules appropriate to our context, and we show that any von Neumann subalgebra of M which contains D is synthetic. We observe that a result of Sinclair and Smith shows that any Cartan MASA in a von Neumann algebra is norming in the sense of Pop, Sinclair and Smith.Comment: 21 pages, paper is a completely reworked and expanded version of an earlier preprint with a similar titl

    The Radial Masa in a Free Group Factor is Maximal Injective

    Full text link
    The radial (or Laplacian) masa in a free group factor is the abelian von Neumann algebra generated by the sum of the generators (of the free group) and their inverses. The main result of this paper is that the radial masa is a maximal injective von Neumann subalgebra of a free group factor. We also investigate tensor products of maximal injective algebras. Given two inclusions Bi⊂MiB_i\subset M_i of type I\mathrm{I} von Neumann algebras in finite von Neumann algebras such that each BiB_i is maximal injective in MiM_i, we show that the tensor product B1 ⊗ˉ B2B_1\ \bar{\otimes}\ B_2 is maximal injective in $M_1\ \bar{\otimes}\ M_2$ provided at least one of the inclusions satisfies the asymptotic orthogonality property we establish for the radial masa. In particular it follows that finite tensor products of generator and radial masas will be maximal injective in the corresponding tensor product of free group factors.Comment: 25 Pages, Typos corrected and exposition improve

    A remark on the similarity and perturbation problems

    Get PDF
    In this note we show that Kadison's similarity problem for C*-algebras is equivalent to a problem in perturbation theory: must close C*-algebras have close commutants?Comment: 6 Pages, minor typos fixed. C. R. Acad. Sci. Canada, to appea

    Kadison-Kastler stable factors

    Get PDF
    A conjecture of Kadison and Kastler from 1972 asks whether sufficiently close operator algebras in a natural uniform sense must be small unitary perturbations of one another. For n≥3 and a free, ergodic, probability measure-preserving action of SL<sub>n</sub>(Z) on a standard nonatomic probability space (X,μ), write M=(L<sup>∞</sup>(X,μ)⋊SL<sub>n</sub>(Z))⊗¯¯¯R, where R is the hyperfinite II1-factor. We show that whenever M is represented as a von Neumann algebra on some Hilbert space H and N⊆B(H) is sufficiently close to M, then there is a unitary u on H close to the identity operator with uMu∗=N. This provides the first nonamenable class of von Neumann algebras satisfying Kadison and Kastler’s conjecture. We also obtain stability results for crossed products L<sup>∞</sup>(X,μ)⋊Γ whenever the comparison map from the bounded to usual group cohomology vanishes in degree 2 for the module L<sup>2</sup>(X,μ). In this case, any von Neumann algebra sufficiently close to such a crossed product is necessarily isomorphic to it. In particular, this result applies when Γ is a free group
    • …
    corecore