41 research outputs found

    A comprehensive map of the mTOR signaling network

    Get PDF
    The mammalian target of rapamycin (mTOR) is a central regulator of cell growth and proliferation. mTOR signaling is frequently dysregulated in oncogenic cells, and thus an attractive target for anticancer therapy. Using CellDesigner, a modeling support software for graphical notation, we present herein a comprehensive map of the mTOR signaling network, which includes 964 species connected by 777 reactions. The map complies with both the systems biology markup language (SBML) and graphical notation (SBGN) for computational analysis and graphical representation, respectively. As captured in the mTOR map, we review and discuss our current understanding of the mTOR signaling network and highlight the impact of mTOR feedback and crosstalk regulations on drug-based cancer therapy. This map is available on the Payao platform, a Web 2.0 based community-wide interactive process for creating more accurate and information-rich databases. Thus, this comprehensive map of the mTOR network will serve as a tool to facilitate systems-level study of up-to-date mTOR network components and signaling events toward the discovery of novel regulatory processes and therapeutic strategies for cancer

    Targeting adenosine monophosphate-activated protein kinase (AMPK) in preclinical models reveals a potential mechanism for the treatment of neuropathic pain

    Get PDF
    Neuropathic pain is a debilitating clinical condition with few efficacious treatments, warranting development of novel therapeutics. We hypothesized that dysregulated translation regulation pathways may underlie neuropathic pain. Peripheral nerve injury induced reorganization of translation machinery in the peripheral nervous system of rats and mice, including enhanced mTOR and ERK activity, increased phosphorylation of mTOR and ERK downstream targets, augmented eIF4F complex formation and enhanced nascent protein synthesis. The AMP activated protein kinase (AMPK) activators, metformin and A769662, inhibited translation regulation signaling pathways, eIF4F complex formation, nascent protein synthesis in injured nerves and sodium channel-dependent excitability of sensory neurons resulting in a resolution of neuropathic allodynia. Therefore, injury-induced dysregulation of translation control underlies pathology leading to neuropathic pain and reveals AMPK as a novel therapeutic target for the potential treatment of neuropathic pain

    PTEN status is a crucial determinant of the functional outcome of combined MEK and mTOR inhibition in cancer

    Get PDF
    Combined MAPK/PI3K pathway inhibition represents an attractive, albeit toxic, therapeutic strategy in oncology. Since PTEN lies at the intersection of these two pathways, we investigated whether PTEN status determines the functional response to combined pathway inhibition. PTEN (gene, mRNA, and protein) status was extensively characterized in a panel of cancer cell lines and combined MEK/mTOR inhibition displayed highly synergistic pharmacologic interactions almost exclusively in PTEN-loss models. Genetic manipulation of PTEN status confirmed a mechanistic role for PTEN in determining the functional outcome of combined pathway blockade. Proteomic analysis showed greater phosphoproteomic profile modification(s) in response to combined MEK/mTOR inhibition in PTEN- loss contexts and identified JAK1/STAT3 activation as a potential mediator of synergistic interactions. Overall, our results show that PTEN-loss is a crucial determinant of synergistic interactions between MAPK and PI3K pathway inhibitors, potentially exploitable for the selection of cancer patients at the highest chance of benefit from combined therapeutic strategies

    Factors associated with testicular self-examination among unaffected men from multiple-case testicular cancer families

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The lifetime testicular cancer (TC) risk in the general population is relatively low (~1 in 250), but men with a family history of TC are at 4 to 9 times greater risk than those without. Some health and professional organizations recommend consideration of testicular self-examination (TSE) for certain high-risk groups (e.g. men with a family history of TC). Yet little is known about factors associated with TSE behaviors in this at-risk group.</p> <p>Methods</p> <p>We collected information on this subject during an on-going NCI multidisciplinary, etiologically-focused, cross-sectional Familial Testicular Cancer (FTC) study. We present the first report specifically targeting TSE behaviors among first- and second-degree relatives (n = 99) of affected men from families with ≄ 2 TC cases. Demographic, medical, knowledge, health belief, and psychological factors consistent with the Health Belief Model (HBM) were evaluated as variables related to TSE behavior, using chi-square tests of association for categorical variables, and t-tests for continuous variables.</p> <p>Results</p> <p>For men in our sample, 46% (n = 46) reported performing TSE regularly and 51% (n = 50) reported not regularly performing TSE. Factors associated (p < .05) with regularly performing TSE in multivariate analysis were physician recommendation and testicular cancer worry. This is the first study to examine TSE in unaffected men from FTC families.</p> <p>Conclusion</p> <p>The findings suggest that, even in this high-risk setting, TSE practices are sub-optimal. Our data provide a basis for further exploring psychosocial issues that are specific to men with a family history of TC, and formulating intervention strategies aimed at improving adherence to TSE guidelines.</p

    Molecular targeting of prostate cancer cells by a triple drug combination down-regulates integrin driven adhesion processes, delays cell cycle progression and interferes with the cdk-cyclin axis

    Get PDF
    Background: Single drug use has not achieved satisfactory results in the treatment of prostate cancer, despite application of increasingly widespread targeted therapeutics. In the present study, the combined impact of the mammalian target of rapamycin (mTOR)-inhibitor RAD001, the dual EGFr and VGEFr tyrosine kinase inhibitor AEE788 and the histone deacetylase (HDAC)-inhibitor valproic acid (VPA) on prostate cancer growth and adhesion in vitro was investigated. Methods: PC-3, DU-145 and LNCaP cells were treated with RAD001, AEE788 or VPA or with a RAD-AEE-VPA combination. Tumor cell growth, cell cycle progression and cell cycle regulating proteins were then investigated by MTT-assay, flow cytometry and western blotting, respectively. Furthermore, tumor cell adhesion to vascular endothelium or to immobilized extracellular matrix proteins as well as migratory properties of the cells was evaluated, and integrin alpha and beta subtypes were analyzed. Finally, effects of drug treatment on cell signaling pathways were determined. Results: All drugs, separately applied, reduced tumor cell adhesion, migration and growth. A much stronger anti-cancer effect was evoked by the triple drug combination. Particularly, cdk1, 2 and 4 and cyclin B were reduced, whereas p27 was elevated. In addition, simultaneous application of RAD001, AEE788 and VPA altered the membranous, cytoplasmic and gene expression pattern of various integrin alpha and beta subtypes, reduced integrin-linked kinase (ILK) and deactivated focal adhesion kinase (FAK). Signaling analysis revealed that EGFr and the downstream target Akt, as well as p70S6k was distinctly modified in the presence of the drug combination. Conclusions: Simultaneous targeting of several key proteins in prostate cancer cells provides an advantage over targeting a single pathway. Since strong anti-tumor properties became evident with respect to cell growth and adhesion dynamics, the triple drug combination might provide progress in the treatment of advanced prostate cancer

    The role of WNT signalling in urothelial cell carcinoma

    No full text
    Urothelial cell carcinoma (UCC) of the bladder is one of the most common malignancies, causing considerable morbidity and mortality worldwide. It is unique among the epithelial carcinomas as two distinct pathways to tumourigenesis appear to exist: low grade, recurring papillary tumours usually contain oncogenic mutations in FGFR3 or HRAS whereas high grade, muscle invasive tumours with metastatic potential generally have defects in the pathways controlled by the tumour suppressors p53 and retinoblastoma. Over the last two decades, a number of transgenic mouse models of UCC, containing deletions or mutations of key tumour suppressor genes or oncogenes, have helped us understand the mechanisms behind tumour development. In this summary, I present my work investigating the role of the WNT signalling cascade in UCC
    corecore