126 research outputs found

    Rising nutrient-pulse frequency and high UVR strengthen microbial interactions

    Get PDF
    Solar radiation and nutrient pulses regulate the ecosystem’s functioning. However, little is known about how a greater frequency of pulsed nutrients under high ultraviolet radiation (UVR) levels, as expected in the near future, could alter the responses and interaction between primary producers and decomposers. In this report, we demonstrate through a mesocosm study in lake La Caldera (Spain) that a repeated (press) compared to a one-time (pulse) schedule under UVR prompted higher increases in primary (PP) than in bacterial production (BP) coupled with a replacement of photoautotrophs by mixotrophic nanoflagellates (MNFs). The mechanism underlying these amplified phytoplanktonic responses was a dual control by MNFs on bacteria through the excretion of organic carbon and an increased top-down control by bacterivory. We also show across a 6-year whole-lake study that the changes from photoautotrophs to MNFs were related mainly to the frequency of pulsed nutrients (e.g. desert dust inputs). Our results underscore how an improved understanding of the interaction between chronic and stochastic environmental factors is critical for predicting ongoing changes in ecosystem functioning and its responses to climatically driven changes.This study was supported by the Ministerio de Economía y Competitividad and Fondo Europeo de Desarrollo Regional (FEDER) (CGL2011-23681 and CGL2015-67682-R to PC), Ministerio de Medio Ambiente, Rural, y Marino (PN2009/067 to PC) and Junta de Andalucía (Excelencia projects P09-RNM-5376 and P12-RNM-327 to PC and JMMS, respectively). M.J.C. was supported by the Spanish Government “Formación de Profesorado Universitario” PhD grant (FPU12/01243) and I.D.-G. by the Junta de Andalucía “Personal Investigador en Formación” PhD grant (FPI RNM-5376). This work is in partial fulfillment of the Ph. D. thesis of M.J.C

    A Relationship between Carotenoid Accumulation and the Distribution of Species of the Fungus Neurospora in Spain

    Get PDF
    The ascomycete fungus Neurospora is present in many parts of the world, in particular in tropical and subtropical areas, where it is found growing on recently burned vegetation. We have sampled the Neurospora population across Spain. The sampling sites were located in the region of Galicia (northwestern corner of the Iberian peninsula), the province of Cáceres, the city of Seville, and the two major islands of the Canary Islands archipelago (Tenerife and Gran Canaria, west coast of Africa). The sites covered a latitude interval between 27.88° and 42.74°. We have identified wild-type strains of N. discreta, N. tetrasperma, N. crassa, and N. sitophila and the frequency of each species varied from site to site. It has been shown that after exposure to light Neurospora accumulates the orange carotenoid neurosporaxanthin, presumably for protection from UV radiation. We have found that each Neurospora species accumulates a different amount of carotenoids after exposure to light, but these differences did not correlate with the expression of the carotenogenic genes al-1 or al-2. The accumulation of carotenoids in Neurospora shows a correlation with latitude, as Neurospora strains isolated from lower latitudes accumulate more carotenoids than strains isolated from higher latitudes. Since regions of low latitude receive high UV irradiation we propose that the increased carotenoid accumulation may protect Neurospora from high UV exposure. In support of this hypothesis, we have found that N. crassa, the species that accumulates more carotenoids, is more resistant to UV radiation than N. discreta or N. tetrasperma. The photoprotection provided by carotenoids and the capability to accumulate different amounts of carotenoids may be responsible, at least in part, for the distribution of Neurospora species that we have observed across a range of latitudes

    Anticholinergic drug burden tools/scales and adverse outcomes in different clinical settings: a systematic review of reviews

    Get PDF
    Background: Cumulative anticholinergic exposure (anticholinergic burden) has been linked to a number of adverse outcomes. To conduct research in this area, an agreed approach to describing anticholinergic burden is needed. Objective: This review set out to identify anticholinergic burden scales, to describe their rationale, the settings in which they have been used and the outcomes associated with them. Methods: A search was performed using the Healthcare Databases Advanced Search of MEDLINE, EMBASE, Cochrane, CINAHL and PsycINFO from inception to October 2016 to identify systematic reviews describing anticholinergic burden scales or tools. Abstracts and titles were reviewed to determine eligibility for review with eligible articles read in full. The final selection of reviews was critically appraised using the ROBIS tool and pre-defined data were extracted; the primary data of interest were the anticholinergic burden scales or tools used. Results: Five reviews were identified for analysis containing a total of 62 original articles. Eighteen anticholinergic burden scales or tools were identified with variation in their derivation, content and how they quantified the anticholinergic activity of medications. The Drug Burden Index was the most commonly used scale or tool in community and database studies, while the Anticholinergic Risk Scale was used more frequently in care homes and hospital settings. The association between anticholinergic burden and clinical outcomes varied by index and study. Falls and hospitalisation were consistently found to be associated with anticholinergic burden. Mortality, delirium, physical function and cognition were not consistently associated. Conclusions: Anticholinergic burden scales vary in their rationale, use and association with outcomes. This review showed that the concept of anticholinergic burden has been variably defined and inconsistently described using a number of indices with different content and scoring. The association between adverse outcomes and anticholinergic burden varies between scores and has not been conclusively established

    Immune response of healthy horses to DNA constructs formulated with a cationic lipid transfection reagent

    Get PDF
    Background Deoxyribonucleic acid (DNA) vaccines are used for experimental immunotherapy of equine melanoma. The injection of complexed linear DNA encoding interleukin (IL)-12/IL-18 induced partial tumour remission in a clinical study including 27 grey horses. To date, the detailed mechanism of the anti-tumour effect of this treatment is unknown. Results In the present study, the clinical and cellular responses of 24 healthy horses were monitored over 72 h after simultaneous intradermal and intramuscular application of equine IL-12/IL-18 DNA (complexed with a transfection reagent) or comparative substances (transfection reagent only, nonsense DNA, nonsense DNA depleted of CG). Although the strongest effect was observed in horses treated with expressing DNA, horses in all groups treated with DNA showed systemic responses. In these horses treated with DNA, rectal temperatures were elevated after treatment and serum amyloid A increased. Total leukocyte and neutrophil counts increased, while lymphocyte numbers decreased. The secretion of tumour necrosis factor alpha (TNFα) and interferon gamma (IFNγ) from peripheral mononuclear blood cells ex vivo increased after treatments with DNA, while IL-10 secretion decreased. Horses treated with DNA had significantly higher myeloid cell numbers and chemokine (C-X-C motif) ligand (CXCL)-10 expression in skin samples at the intradermal injection sites compared to horses treated with transfection reagent only, suggesting an inflammatory response to DNA treatment. In horses treated with expressing DNA, however, local CXCL-10 expression was highest and immunohistochemistry revealed more intradermal IL-12-positive cells when compared to the other treatment groups. In contrast to non-grey horses, grey horses showed fewer effects of DNA treatments on blood lymphocyte counts, TNFα secretion and myeloid cell infiltration in the dermis. Conclusion Treatment with complexed linear DNA constructs induced an inflammatory response independent of the coding sequence and of CG motif content. Expressing IL-12/IL-18 DNA locally induces expression of the downstream mediator CXCL-10. The grey horses included appeared to display an attenuated immune response to DNA treatment, although grey horses bearing melanoma responded to this treatment with moderate tumour remission in a preceding study. Whether the different immunological reactivity compared to other horses may contributes to the melanoma susceptibility of grey horses remains to be elucidated

    Cleavage modification did not alter blastomere fates during bryozoan evolution

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.The study was funded by the core budget of the Sars Centre and by The European Research Council Community’s Framework Program Horizon 2020 (2014–2020) ERC grant agreement 648861 to A

    Estrogen- and Progesterone (P4)-Mediated Epigenetic Modifications of Endometrial Stromal Cells (EnSCs) and/or Mesenchymal Stem/Stromal Cells (MSCs) in the Etiopathogenesis of Endometriosis

    Get PDF
    Endometriosis is a common chronic inflammatory condition in which endometrial tissue appears outside the uterine cavity. Because ectopic endometriosis cells express both estrogen and progesterone (P4) receptors, they grow and undergo cyclic proliferation and breakdown similar to the endometrium. This debilitating gynecological disease affects up to 15% of reproductive aged women. Despite many years of research, the etiopathogenesis of endometrial lesions remains unclear. Retrograde transport of the viable menstrual endometrial cells with retained ability for attachment within the pelvic cavity, proliferation, differentiation and subsequent invasion into the surrounding tissue constitutes the rationale for widely accepted implantation theory. Accordingly, the most abundant cells in the endometrium are endometrial stromal cells (EnSCs). These cells constitute a particular population with clonogenic activity that resembles properties of mesenchymal stem/stromal cells (MSCs). Thus, a significant role of stem cell-based dysfunction in formation of the initial endometrial lesions is suspected. There is increasing evidence that the role of epigenetic mechanisms and processes in endometriosis have been underestimated. The importance of excess estrogen exposure and P4 resistance in epigenetic homeostasis failure in the endometrial/endometriotic tissue are crucial. Epigenetic alterations regarding transcription factors of estrogen and P4 signaling pathways in MSCs are robust in endometriotic tissue. Thus, perspectives for the future may include MSCs and EnSCs as the targets of epigenetic therapies in the prevention and treatment of endometriosis. Here, we reviewed the current known changes in the epigenetic background of EnSCs and MSCs due to estrogen/P4 imbalances in the context of etiopathogenesis of endometriosis

    The study of Priapulus caudatus reveals conserved molecular patterning underlying different gut morphogenesis in the Ecdysozoa

    Get PDF
    Background The digestive systems of animals can become highly specialized in response to their exploration and occupation of new ecological niches. Although studies on different animals have revealed commonalities in gut formation, the model systems Caenorhabditis elegans and Drosophila melanogaster, which belong to the invertebrate group Ecdysozoa, exhibit remarkable deviations in how their intestines develop. Their morphological and developmental idiosyncrasies have hindered reconstructions of ancestral gut characters for the Ecdysozoa, and limit comparisons with vertebrate models. In this respect, the phylogenetic position, and slow evolving morphological and molecular characters of marine priapulid worms advance them as a key group to decipher evolutionary events that occurred in the lineages leading to C. elegans and D. melanogaster. Results In the priapulid Priapulus caudatus, the gut consists of an ectodermal foregut and anus, and a mid region of at least partial endodermal origin. The inner gut develops into a 16-cell primordium devoid of visceral musculature, arranged in three mid tetrads and two posterior duplets. The mouth invaginates ventrally and shifts to a terminal anterior position as the ventral anterior ectoderm differentially proliferates. Contraction of the musculature occurs as the head region retracts into the trunk and resolves the definitive larval body plan. Despite obvious developmental differences with C. elegans and D. melanogaster, the expression in P. caudatus of the gut-related candidate genes NK2.1, foxQ2, FGF8/17/18, GATA456, HNF4, wnt1, and evx demonstrate three distinct evolutionarily conserved molecular profiles that correlate with morphologically identified sub-regions of the gut. Conclusions The comparative analysis of priapulid development suggests that a midgut formed by a single endodermal population of vegetal cells, a ventral mouth, and the blastoporal origin of the anus are ancestral features in the Ecdysozoa. Our molecular data on P. caudatus reveal a conserved ecdysozoan gut-patterning program and demonstrates that extreme morphological divergence has not been accompanied by major molecular innovations in transcriptional regulators during digestive system evolution in the Ecdysozoa. Our data help us understand the origins of the ecdysozoan body plan, including those of C. elegans and D. melanogaster, and this is critical for comparisons between these two prominent model systems and their vertebrate counterparts
    • …
    corecore