314 research outputs found
Comparative CFD simulations of a hydrogen fire scenario
Hydrogen leakage and fire ignition and propagation are safety concerns in several industrial plants. In a nuclear fusion power plants the separation of hydrogen and tritium takes place in different steps, among which one or more electrolyzers are foreseen. A fire scenario could take place in case of leakage of hydrogen. In such cases, it is important to prevent the spreading of the fire to adjacent rooms and, at the same time, to withstand the pressure load on walls, to avoid radioactivity release in the surrounding environment. A preliminary study has been carried out with the aim of comparing CFD tools for fire scenario simulations involving hydrogen release. Results have been obtained comparing two codes: ANSYS Fluent© and FDS. The two codes have been compared both for hydrogen dispersion and hydrogen fire in a confined environment. The first scenario is aimed to obtaining of volume fraction 3D maps for the evaluation of the different diffusion/transport models. In the second scenario, characterized by a double-ended guillotine break, the fire is supposed to be ignited at the same time of the impact. Simulations have been carried out for the first 60 seconds. Hydrogen concentration, temperature and pressure fields are compared and discussed
Preliminary evaluation of the expansion system size for a pressurized gas loop: Application to a fusion reactor based on a helium-cooled blanket
Some considerations to preliminarily design the size of the Expansion Volume (EV) and the relief pipes for a Vacuum Vessel Pressure Suppression System, to be adopted in a fusion reactor based on a helium cooled blanket, are presented. The volume of the EV depends on the total energy of the cooling system and it can be sized based on a required final pressure at equilibrium, by a simple energy balance. Two different EV solutions have been analysed: a “dry” EV and a “wet” EV. In this last, a certain amount of water could be mixed (by spraying or discharging in a pool) with the discharged helium, to reduce its temperature and allowing a lower size of the EV with respect to the “dry” solution. The pressure peak in vacuum vessel (VV) depends mainly on break area and flow area of the relief pipes and a simple formula to be used to size these pipes is suggested. The computer code CONSEN has been used to perform sensitivity analyses and to verify the methodology
A Preliminary Exergy Analysis of the EU DEMO Fusion Reactor
Purpose of the present study is the exergy analysis of EU DEMO pulsed fusion power plant considering the Primary Heat Transfer Systems, the Intermediate Heat Transfer System (IHTS) including the Energy Storage System (ESS) as a first option to ensure the continuity of electric power released to the grid. A second option here considered is a methane fired auxiliary boiler replacing the ESS. The Power Conversion System (PCS) performance is evaluated as well in the overall balance. The performance analysis is based on the exergy method to specifically assess the amount of exergy destruction determined by irreversible phenomena along the whole cyclic process. The pulse and dwell phases of the reactor operation are evaluated considering the state of the art of the ESS adopting molten salts alternate heating and storage in a hot tank followed by a cooling and recovery of molten salt in a cold tank to ensure the continuity of power release to the electrical grid. The second option of the plant configuration is evaluated on the basis of an auxiliary boiler replacing the ESS with a 10% of the power produced by the reactor during both pulse and dwell modes
Numerical study of laminar magneto-convection in a differentially heated square duct
Magnetohydrodynamic pressure drops are one of the main issues for liquid metal blanket in fusion reactors. Minimize the fluid velocity at few millimeters per second is one strategy that can be employed to address the problem. For such low velocities, buoyant forces can effectively contribute to drive the flow and therefore must be considered in the blanket design. In order to do so, a CFD code able to represent magneto-convective phenomena is required. This work aims to gauge the capability of ANSYS© CFX-15 to solve such cases. The laminar flow in a differentially heated duct was selected as validation benchmark. A horizontal and uniform magnetic field was imposed over a square duct with a linear and constant temperature gradient perpendicular to the field. The fully developed flow was analyzed for Gr = 10^5 and Hartmann number (M) ranging from 10^2 to 10^3. Both insulating and conducting duct walls were considered. Strong dampening of the flow in the center of the duct was observed, whereas high velocity jets appeared close to the walls parallel to the magnetic field. The numerical results were validated against theoretical and numerical results founding an excellent agreement
Magnetohydrodynamic flow and heat transfer around a heated cylinder of arbitrary conductivity
The interaction of the liquid metal with the plasma confinement magnetic field constitutes a challenge for the design of fusion reactor blankets, due to the arise of MHD effects: increased pressure drops, heat transfer suppression, etc. To overcome these issues, a dielectric fluid can be employed as coolant for the breeding zone. A typical configuration involves pipes transverse to the liquid metal flow direction. This numerical study is conducted to assess the influence of pipe conductivity on the MHD flow and heat transfer. The CFD code ANSYS CFX was employed for this purpose. The fluid is assumed to be bounded by rectangular walls with non-uniform thickness and subject to a skewed magnetic field with the main component aligned with the cylinder axis. The simulations were restricted to Re = (20, 40) and M = (10, 50). Three different scenarios for the obstacle were considered: perfectly insulating, finite conductivity and perfectly conducting. The electrical conductivity was found to affect the channel pressure penalty due to the obstacle insertion only for M = 10 and just for the two limiting cases. A general increment of the heat transfer with M was found due to the tendency of the magnetic field to equalize the flow rate between the sub-channels individuated by the pipe. The best results were obtained with the insulating pipe, due to the reduced electromagnetic drag. The generation of counter-rotating vortices close to the lateral duct walls was observed for M=50 and perfectly conducting pipe as a result of the modified currents distribution
Three-dimensional MHD flow and heat transfer in a channel with internal obstacle
The magnetohydrodynamic flow and heat transfer of a liquid metal in a channel past a circular cylinder with walls of non-uniform conductivity were investigated. The applied magnetic field was transversal to the forced flow (x-direction) and coplanar with the obstacle, featuring non-null components in both the z- and y-directions. Moreover, the cylinder was displaced by the duct centreline toward the bottom wall and its surface was at uniform temperature, so that a ΔT was present between the obstacle and the fluid at the inlet. Non-uniform thickness for the duct-bounding walls is considered which leads to the promotion of jets close to the less-conductive surfaces. The flow features and heat transfer for this case were numerically investigated for different values of the Reynolds number (20 ≤ Re ≤ 80) and Hartmann number (0 ≤ Ha ≤ 100). Their effects on the flow features, pressure drop and heat transfer are analysed and discussed in detail in the present paper. The additional pressure drop introduced by the cylinder presence is found to be independent by Re and decreasing with Ha. Enhanced heat transfer is observed for an increasing Ha with NuMHD/Nu = 1.25. at Ha = 100 due to the augmented mass flow rate in the bottom sub-channel
Supercritical carbon dioxide applications for energy conversion systems
In the present paper, the possibility of increasing the thermodynamic efficiency of an electric energy production plant, by using an advanced energy conversion system based on supercritical carbon dioxide (S-CO2) as working fluid, has been analyzed. Since the supercritical carbon dioxide cycles are being considered as a favorable candidate for the next generation of nuclear power plant energy conversion systems, a lead cooled fast reactor has been selected as reference in the present analyses. The main aim of the present study is to compare two different S-CO2 thermal cycles applied on the conversion system of a nuclear power plant. The reference Lead cooled Fast Reactor (LFR) used for the present analyses is the ALFRED reactor, which has a thermal power of 300 MW and it is considered the scaled down prototype of the industrial European Lead Fast Reactor (ELFR).
Thermodynamic cycles selected for the present study are a Recompression Cycle and a Brayton Cycle with Regeneration. Each of them has been analyzed under several design conditions regarding the maximum pressure and the regeneration coefficient. Among different design conditions, the solution allowing the maximization of the overall efficiency has been identified. Thermodynamic analyses have been carried out with GateCycle™ v. 6.1.1, which is a General Electric software able to predict design and off-design performance of power plants
MHD mixed convection flow in the WCLL: heat transfer analysis and cooling system
In the Water-Cooled Lithium Lead (WCLL) blanket, a critical problem faced by the design is to ensure that the breeding zone (BZ) is properly cooled by the refrigeration system to keep the structural materials under the maximum allowed temperature by the design criteria. CFD simulations are performed using ANSYS CFX to assess the cooling system performances accounting for the magnetic field effect in the sub-channel closest to the first wall (FW). Here, intense buoyancy forces (Gr = 10^10) interact with the pressure-driven flow (Re = 10^3) in a MHD mixed convection regime. A constant magnetic field, parallel to the toroidal direction, is assumed with intensity B = 4.4 T. The walls bounding the channel and the water pipes are modeled as perfectly conducting. The magnetic field is found to dampen the velocity fluctuations triggered by the buoyancy forces and the flow is similar to a forced convection regime. The PbLi heat transfer coefficient is reduced to one-third of its ordinary hydrodynamic value and, consequently, hot-spots between the nested pipes and at the FW are observed, where TMax = 1000K. Optimization strategies for the BZ cooling system layout are proposed and implemented in the CFD model, thus fullling the design criterion
Experimental investigation on free surface vortices driven by tangential inlets
Particle Image Velocimetry (PIV) measurements have been carried out in order to analyze the structure of free surface vortices in a promoting geometry with two tangential inlets. Velocity fields associated to the free surface vortex have been obtained at different horizontal planes and Reynolds numbers. Average velocity fields have been calculated and tangential velocity profiles have been compared at different vortex stages and measurement planes. The results show that tangential flow is uniform along the vortex axis and it scales well with the average exit velocity. The tangential velocity profiles, in comparison to the potential behavior, show discrepancies especially at large distances from the vortex axis. Vorticity fields and circulation profiles have been also derived from the measured velocity fields and discussed. The circulation profiles increase along the vortex radius even at large distances from the vortex axis, so that the potential solution is not applicable at all. The comparison of tangential velocity and circulation profiles between promoted and free vortices, the last presented in a previous paper, shows that the tangential motion in a driven vortex is more intense and predominant over the sink effect (radial motion), except very close to the tank bottom, as in a forced configuration (i.e. rotating cylindrical tank)
Sizing of the Vacuum Vessel Pressure Suppression System of a Fusion Reactor Based on a Water-Cooled Blanket, for the Purpose of the Preconceptual Design
A methodology to preliminarily evaluate the size of the suppression tank and the relief pipes for a Vacuum Vessel Pressure Suppression System, to be adopted in a fusion reactor based on a water cooled blanket, is presented. The volume of the ST depends on the total energy of the water cooling system and it can be sized based on a required final pressure at equilibrium, by a simple energy balance. The pressure peak in the VV depends mainly on break area and the flow area of the relief pipes and some suggestions about the method for a preliminarily evaluation of their size are discussed. The computer code CONSEN has been used to perform a parametric study and to verify the methodology
- …