254 research outputs found

    Solving Nonlinear Parabolic Equations by a Strongly Implicit Finite-Difference Scheme

    Full text link
    We discuss the numerical solution of nonlinear parabolic partial differential equations, exhibiting finite speed of propagation, via a strongly implicit finite-difference scheme with formal truncation error O[(Δx)2+(Δt)2]\mathcal{O}\left[(\Delta x)^2 + (\Delta t)^2 \right]. Our application of interest is the spreading of viscous gravity currents in the study of which these type of differential equations arise. Viscous gravity currents are low Reynolds number (viscous forces dominate inertial forces) flow phenomena in which a dense, viscous fluid displaces a lighter (usually immiscible) fluid. The fluids may be confined by the sidewalls of a channel or propagate in an unconfined two-dimensional (or axisymmetric three-dimensional) geometry. Under the lubrication approximation, the mathematical description of the spreading of these fluids reduces to solving the so-called thin-film equation for the current's shape h(x,t)h(x,t). To solve such nonlinear parabolic equations we propose a finite-difference scheme based on the Crank--Nicolson idea. We implement the scheme for problems involving a single spatial coordinate (i.e., two-dimensional, axisymmetric or spherically-symmetric three-dimensional currents) on an equispaced but staggered grid. We benchmark the scheme against analytical solutions and highlight its strong numerical stability by specifically considering the spreading of non-Newtonian power-law fluids in a variable-width confined channel-like geometry (a "Hele-Shaw cell") subject to a given mass conservation/balance constraint. We show that this constraint can be implemented by re-expressing it as nonlinear flux boundary conditions on the domain's endpoints. Then, we show numerically that the scheme achieves its full second-order accuracy in space and time. We also highlight through numerical simulations how the proposed scheme accurately respects the mass conservation/balance constraint.Comment: 36 pages, 9 figures, Springer book class; v2 includes improvements and corrections; to appear as a contribution in "Applied Wave Mathematics II

    Age differences in physiological responses to self-paced and incremental V˙O2max\dot V O_{2max} testing

    Get PDF
    Purpose: A self-paced maximal exercise protocol has demonstrated higher V˙O2max\dot V O_{2max} values when compared against traditional tests. The aim was to compare physiological responses to this self-paced V˙O2max\dot V O_{2max} protocol (SPV) in comparison to a traditional ramp V˙O2max\dot V O_{2max} (RAMP) protocol in young (18–30 years) and old (50–75 years) participants. Methods: Forty-four participants (22 young; 22 old) completed both protocols in a randomised, counter-balanced, crossover design. The SPV included 5 × 2 min stages, participants were able to self-regulate their power output (PO) by using incremental ‘clamps’ in ratings of perceived exertion. The RAMP consisted of either 15 or 20 W min1^{−1}. Results: Expired gases, cardiac output (Q), stroke volume (SV), muscular deoxyhaemoglobin (deoxyHb) and electromyography (EMG) at the vastus lateralis were recorded throughout. Results demonstrated significantly higher V˙O2max\dot V O_{2max} in the SPV (49.68 ± 10.26 ml kg1^{−1} min1^{−1}) vs. the RAMP (47.70 ± 9.98 ml kg1^{−1} min1^{−1}) in the young, but not in the old group (>0.05). Q and SV were significantly higher in the SPV vs. the RAMP in the young (0.05). No differences seen in deoxyHb and EMG for either age groups (>0.05). Peak PO was significantly higher in the SPV vs. the RAMP in both age groups (<0.05). Conclusion: Findings demonstrate that the SPV produces higher V˙O2max\dot V O_{2max}, peak Q and SV values in the young group. However, older participants achieved similar V˙O2max\dot V O_{2max} values in both protocols, mostly likely due to age-related differences in cardiovascular responses to incremental exercise, despite them achieving a higher physiological workload in the SPV

    Proteomic Identification of IPSE/alpha-1 as a Major Hepatotoxin Secreted by Schistosoma mansoni Eggs

    Get PDF
    The flatworm disease, schistosomiasis, is a major public health problem in sub-Saharan Africa, South America and East Asia. A hallmark of infection with Schistosoma mansoni is the immune response to parasite eggs trapped in the liver and other organs. This response involves an infiltration of cells that surround the parasite egg forming a “granuloma.” In mice deprived of T-cells, this granulomatous response is lacking, and toxic products released by eggs quickly cause liver damage and death. Thus the granulomata protect the host from toxic egg products. Only one hepatotoxic molecule, omega-1, has been described to date. We set out to identify other S. mansoni egg hepatotoxins using liver cells grown in culture. We first showed that live eggs, their secretions, and pure omega-1 are toxic. Using a physical separation technique to prepare fractions from whole egg secretions, we identified the presence of IPSE/alpha-1, a protein that is known to strongly influence the immune system. We showed that IPSE/alpha-1 is also hepatotoxic, and that toxicity of both omega-1 and IPSE/alpha-1 can be prevented by first mixing the proteins with specific neutralizing antibodies. Both proteins constitute the majority of hepatotoxicity released by eggs

    Tumor-Targeted Delivery of IL-2 by NKG2D Leads to Accumulation of Antigen-Specific CD8+ T Cells in the Tumor Loci and Enhanced Anti-Tumor Effects

    Get PDF
    Interleukin-2 (IL-2) has been shown to promote tumor-specific T-cell proliferation and differentiation but systemic administration of IL-2 results in significant toxicity. Therefore, a strategy that can specifically deliver IL-2 to the tumor location may alleviate concerns of toxicity. Because NKG2D ligands have been shown to be highly expressed in many cancer cells but not in healthy cells, we reason that a chimeric protein consisting of NKG2D linked to IL-2 will lead to the specific targeting of IL-2 to the tumor location. Therefore, we created chimeric proteins consisting of NKG2D linked to Gaussia luciferase (GLuc; a marker protein) or IL-2 to form NKG2D-Fc-GLuc and NKG2D-Fc-IL2, respectively. We demonstrated that NKG2D linked to GLuc was able to deliver GLuc to the tumor location in vivo. Furthermore, we showed that TC-1 tumor-bearing mice intramuscularly injected with DNA encoding NKG2D-Fc-IL2, followed by electroporation, exhibited an increased number of luciferase-expressing E7-specific CD8+ T cells at the tumor location. More importantly, treatment with the DNA construct encoding NKG2D-Fc-IL2 significantly enhanced the therapeutic anti-tumor effects generated by intradermal vaccination with therapeutic HPV DNA in tumor-bearing mice. Therefore, by linking NKG2D to IL2, we are able to specifically deliver IL-2 to the tumor location, enhancing antigen-specific T-cell immune response and controlling tumor growth. Our approach represents a platform technology to specifically deliver proteins of interest to tumor loci

    Combination antiretroviral therapy and the risk of myocardial infarction

    Get PDF

    Study of Transcriptional Effects in Cis at the IFIH1 Locus

    Get PDF
    Background: The Thr allele at the non-synonymous single-nucleotide polymorphism (nsSNP) Thr946Ala in the IFIH1 gene confers risk for Type 1 diabetes (T1D). The SNP is embedded in a 236 kb linkage disequilibrium (LD) block that includes four genes: IFIH1, GCA, FAP and KCNH7. The absence of common nsSNPs in the other genes makes the IFIH1 SNP the strongest functional candidate, but it could be merely a marker of association, due to LD with a variant regulating expression levels of IFIH1 or neighboring genes. Methodology/Principal Findings: We investigated the effect of the T1D-associated variation on mRNA transcript expression of these genes. Heterozygous mRNA from lymphoblastoid cell lines (LCLs), pancreas and thymus was examined by allelic expression imbalance, to detect effects in cis on mRNA expression. Using single-nucleotide primer extension, we found no difference between mRNA transcripts in 9 LCLs, 6 pancreas and 13 thymus samples, suggesting that GCA and FAP are not involved. On the other hand, KCNH7 was not expressed at a detectable level in all tissues examined. Moreover, the association of the Thr946Ala SNP with T1D is not due to modulation of IFIH1 expression in organs involved in the disease, pointing to the IFIH1 nsSNP as the causal variant. Conclusions/Significance: The mechanism of the association of the nsSNP with T1D remains to be determined, but does not involve mRNA modulation. It becomes necessary to study differential function of the IFIH1 protein alleles at Thr946Al

    The Safety Attitudes Questionnaire: psychometric properties, benchmarking data, and emerging research

    Get PDF
    BACKGROUND: There is widespread interest in measuring healthcare provider attitudes about issues relevant to patient safety (often called safety climate or safety culture). Here we report the psychometric properties, establish benchmarking data, and discuss emerging areas of research with the University of Texas Safety Attitudes Questionnaire. METHODS: Six cross-sectional surveys of health care providers (n = 10,843) in 203 clinical areas (including critical care units, operating rooms, inpatient settings, and ambulatory clinics) in three countries (USA, UK, New Zealand). Multilevel factor analyses yielded results at the clinical area level and the respondent nested within clinical area level. We report scale reliability, floor/ceiling effects, item factor loadings, inter-factor correlations, and percentage of respondents who agree with each item and scale. RESULTS: A six factor model of provider attitudes fit to the data at both the clinical area and respondent nested within clinical area levels. The factors were: Teamwork Climate, Safety Climate, Perceptions of Management, Job Satisfaction, Working Conditions, and Stress Recognition. Scale reliability was 0.9. Provider attitudes varied greatly both within and among organizations. Results are presented to allow benchmarking among organizations and emerging research is discussed. CONCLUSION: The Safety Attitudes Questionnaire demonstrated good psychometric properties. Healthcare organizations can use the survey to measure caregiver attitudes about six patient safety-related domains, to compare themselves with other organizations, to prompt interventions to improve safety attitudes and to measure the effectiveness of these interventions

    Abdominal obesity and metabolic syndrome: exercise as medicine?

    Get PDF
    Background: Metabolic syndrome is defined as a cluster of at least three out of five clinical risk factors: abdominal (visceral) obesity, hypertension, elevated serum triglycerides, low serum high-density lipoprotein (HDL) and insulin resistance. It is estimated to affect over 20% of the global adult population. Abdominal (visceral) obesity is thought to be the predominant risk factor for metabolic syndrome and as predictions estimate that 50% of adults will be classified as obese by 2030 it is likely that metabolic syndrome will be a significant problem for health services and a drain on health economies.Evidence shows that regular and consistent exercise reduces abdominal obesity and results in favourable changes in body composition. It has therefore been suggested that exercise is a medicine in its own right and should be prescribed as such. Purpose of this review: This review provides a summary of the current evidence on the pathophysiology of dysfunctional adipose tissue (adiposopathy). It describes the relationship of adiposopathy to metabolic syndrome and how exercise may mediate these processes, and evaluates current evidence on the clinical efficacy of exercise in the management of abdominal obesity. The review also discusses the type and dose of exercise needed for optimal improvements in health status in relation to the available evidence and considers the difficulty in achieving adherence to exercise programmes. Conclusion: There is moderate evidence supporting the use of programmes of exercise to reverse metabolic syndrome although at present the optimal dose and type of exercise is unknown. The main challenge for health care professionals is how to motivate individuals to participate and adherence to programmes of exercise used prophylactically and as a treatment for metabolic syndrome

    Adherence to 24-Hour Movement Guidelines for the Early Years and associations with social-cognitive development among Australian preschool children

    Get PDF
    Background: The new Australian 24-Hour Movement Guidelines for the Early Years recommend that, for preschoolers, a healthy 24-h includes: i) ≥180 min of physical activity, including ≥60 min of energetic play, ii) ≤1 h of sedentary screen time, and iii) 10–13 h of good quality sleep. Using an Australian sample, this study reports the proportion of preschool children meeting these guidelines and investigates associations with social-cognitive development. Methods: Data from 248 preschool children (mean age = 4.2 ± 0.6 years, 57% boys) participating in the PATH-ABC study were analyzed. Children completed direct assessments of physical activity (accelerometry) and social cognition (the Test of Emotional Comprehension (TEC) and Theory of Mind (ToM)). Parents reported on children’s screen time and sleep. Children were categorised as meeting/not meeting: i) individual guidelines, ii) combinations of two guidelines, or iii) all three guidelines. Associations were examined using linear regression adjusting for child age, sex, vocabulary, area level socio-economic status and childcare level clustering. Results: High proportions of children met the physical activity (93.1%) and sleep (88.7%) guidelines, whereas fewer met the screen time guideline (17.3%). Overall, 14.9% of children met all three guidelines. Children meeting the sleep guideline performed better on TEC than those who did not (mean difference [MD] = 1.41; 95% confidence interval (CI) = 0.36, 2.47). Children meeting the sleep and physical activity or sleep and screen time guidelines also performed better on TEC (MD = 1.36; 95% CI = 0.31, 2.41) and ToM (MD = 0.25; 95% CI = −0.002, 0.50; p = 0.05), respectively, than those who did not. Meeting all three guidelines was associated with better ToM performance (MD = 0.28; 95% CI = −0.002, 0.48, p = 0.05), while meeting a larger number of guidelines was associated with better TEC (3 or 2 vs. 1/none, p < 0.02) and ToM performance (3 vs. 2, p = 0.03). Conclusions: Strategies to promote adherence to the 24-Hour Movement Behaviour Guidelines for the Early Years among preschool children are warranted. Supporting preschool children to meet all guidelines or more guidelines, particularly the sleep and screen time guidelines, may be beneficial for their social-cognitive development

    Paracrine Diffusion of PrPC and Propagation of Prion Infectivity by Plasma Membrane-Derived Microvesicles

    Get PDF
    Cellular prion protein (PrPc) is a physiological constituent of eukaryotic cells. The cellular pathways underlying prions spread from the sites of prions infection/peripheral replication to the central nervous system are still not elucidated. Membrane-derived microvesicles (MVs) are submicron (0.1–1 µm) particles, that are released by cells during plasma membrane shedding processes. They are usually liberated from different cell types, mainly upon activation as well as apoptosis, in this case, one of their hallmarks is the exposure of phosphatidylserine in the outer leaflet of the membrane. MVs are also characterized by the presence of adhesion molecules, MHC I molecules, as well as of membrane antigens typical of their cell of origin. Evidence exists that MVs shedding provide vehicles to transfer molecules among cells, and that MVs are important modulators of cell-to-cell communication. In this study we therefore analyzed the potential role of membrane-derived MVs in the mechanism(s) of PrPC diffusion and prion infectivity transmission. We first identified PrPC in association with the lipid raft components Fyn, flotillin-2, GM1 and GM3 in MVs from plasma of healthy human donors. Similar findings were found in MVs from cell culture supernatants of murine neuronal cells. Furthermore we demonstrated that PrPSc is released from infected murine neuronal cells in association with plasma membrane-derived MVs and that PrPSc-bearing MVs are infectious both in vitro and in vivo. The data suggest that MVs may contribute both to the intercellular mechanism(s) of PrPC diffusion and signaling as well as to the process of prion spread and neuroinvasion
    corecore