125 research outputs found

    Improving the Dirac Operator in Lattice QCD

    Full text link
    Recently various new concepts for the construction of Dirac operators in lattice Quantum Chromodynamics (QCD) have been introduced. These operators satisfy the so-called Ginsparg-Wilson condition (GWC), thus obeying the Atiyah-Singer index theorem and violating chiral symmetry only in a modest and local form. Here we present studies in 4-d for SU(3) gauge configurations with non-trivial topological content. We study the flow of eigenvalues and we compare the numerical stability and efficiency of a recently suggested chirally improved operator with that of others in this respect.Comment: Contrib. to Conf. on Comp. Physics, Sept. 2001 (Aachen); 4 pages, 4 figures, (LaTeX style files cpauth.cls, elsart.cls

    Approximate Ginsparg-Wilson fermions: A first test

    Get PDF
    We construct a 4-d lattice Dirac operator D using a systematical expansion in terms of simple operators on the lattice. The Ginsparg-Wilson equation turns into a system of coupled equations for the expansion coefficients of D. We solve these equations for a finite parametrization of D and find an approximate solution of the Ginsparg-Wilson equation. We analyze the spectral properties of our D for various ensembles of quenched SU(3) configurations. Improving the gauge field action considerably improves the spectral properties of our D.Comment: 30 pages, 6 figures, corrected version to appear in NP

    Temperature dependence of the breakdown of the quantum Hall effect studied by induced currents

    Get PDF
    Copyright © 2004 The American Physical SocietyWe have developed a model of the high-current breakdown of the integer quantum Hall effect, as measured in contactless experiments using a highly-sensitive torsion balance magnetometer. The model predicts that, for empirically “low-mobility” samples (μ<75 m2 V−1 s−1), the critical current for breakdown should decrease with, and have a linear dependence on, temperature. This prediction is verified experimentally with the addition of a low-temperature saturation of the critical current at a temperature that depends on both sample number density and filling factor. It is shown that this saturation is consistent with quasielastic inter-Landau-level scattering when the maximum electric field in the sample reaches a large enough value. In addition we show how this model can be extended to give qualitative agreement with experiments on high-mobility samples

    Democracy and governance networks: compatible or not?

    Get PDF
    The relationship between representative democracy and governance networks is investigated at a theoretical level. Four conjectures about the relationship are defined. The incompatibility conjectures rests on the primacy of politics and sees governance networks as a threat. The complementarity conjecture presents governance networks as a means of enabling greater participation in the policy process and sensitivity in programme implementation. The transitional conjecture posits a wider evolution of governance forms towards network relationships. The instrumental conjecture views governance networks as a powerful means through which dominant interests can achieve their goals. Illustrative implications for theory and practice are identified, in relation to power in the policy process, the public interest, and the role of public managers. The heuristic potential of the conjectures is demonstrated through the identification of an outline research agenda

    Single Spin Asymmetry ANA_N in Polarized Proton-Proton Elastic Scattering at s=200\sqrt{s}=200 GeV

    Get PDF
    We report a high precision measurement of the transverse single spin asymmetry ANA_N at the center of mass energy s=200\sqrt{s}=200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The ANA_N was measured in the four-momentum transfer squared tt range 0.003t0.0350.003 \leqslant |t| \leqslant 0.035 \GeVcSq, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of ANA_N and its tt-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this s\sqrt{s}, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure

    Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV

    Get PDF
    We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive Pi0 production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. The cross section was measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T < 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of Pi0's in their parent jets was found to be around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC

    High pTp_{T} non-photonic electron production in pp+pp collisions at s\sqrt{s} = 200 GeV

    Get PDF
    We present the measurement of non-photonic electron production at high transverse momentum (pT>p_T > 2.5 GeV/cc) in pp + pp collisions at s\sqrt{s} = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross-sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured non-photonic electron cross-sections with previously published RHIC data and pQCD calculations. Using the relative contributions of B and D mesons to non-photonic electrons, we determine the integrated cross sections of electrons (e++e2\frac{e^++e^-}{2}) at 3 GeV/c<pT< c < p_T <~10 GeV/cc from bottom and charm meson decays to be dσ(Be)+(BDe)dyeye=0{d\sigma_{(B\to e)+(B\to D \to e)} \over dy_e}|_{y_e=0} = 4.0±0.5\pm0.5({\rm stat.})±1.1\pm1.1({\rm syst.}) nb and dσDedyeye=0{d\sigma_{D\to e} \over dy_e}|_{y_e=0} = 6.2±0.7\pm0.7({\rm stat.})±1.5\pm1.5({\rm syst.}) nb, respectively.Comment: 17 pages, 17 figure

    Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at sNN=200\sqrt{s_{NN}} = 200 GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, η/s\eta/s, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of η/s\eta/s that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.

    Longitudinal scaling property of the charge balance function in Au + Au collisions at 200 GeV

    Get PDF
    We present measurements of the charge balance function, from the charged particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au collisions at 200 GeV using the STAR detector at RHIC. We observe that the balance function is boost-invariant within the pseudorapidity coverage [-1.3, 1.3]. The balance function properly scaled by the width of the observed pseudorapidity window does not depend on the position or size of the pseudorapidity window. This scaling property also holds for particles in different transverse momentum ranges. In addition, we find that the width of the balance function decreases monotonically with increasing transverse momentum for all centrality classes.Comment: 6 pages, 3 figure

    Measurement of the Bottom contribution to non-photonic electron production in p+pp+p collisions at s\sqrt{s} =200 GeV

    Get PDF
    The contribution of BB meson decays to non-photonic electrons, which are mainly produced by the semi-leptonic decays of heavy flavor mesons, in p+pp+p collisions at s=\sqrt{s} = 200 GeV has been measured using azimuthal correlations between non-photonic electrons and hadrons. The extracted BB decay contribution is approximately 50% at a transverse momentum of pT5p_{T} \geq 5 GeV/cc. These measurements constrain the nuclear modification factor for electrons from BB and DD meson decays. The result indicates that BB meson production in heavy ion collisions is also suppressed at high pTp_{T}.Comment: 6 pages, 4 figures, accepted by PR
    corecore