665 research outputs found

    The Wonder of Colors and the Principle of Ariadne

    Get PDF
    The Principle of Ariadne, formulated in 1988 ago by Walter Carnielli and Carlos Di Prisco and later published in 1993, is an infinitary principle that is independent of the Axiom of Choice in ZF, although it can be consistently added to the remaining ZF axioms. The present paper surveys, and motivates, the foundational importance of the Principle of Ariadne and proposes the Ariadne Game, showing that the Principle of Ariadne, corresponds precisely to a winning strategy for the Ariadne Game. Some relations to other alternative. set-theoretical principles are also briefly discussed

    Experimental tests on shallow foundations of onshore wind turbine towers

    Get PDF
    The current effort towards the progressive switch from carbon-based to renewable energy production is leading to a relevant spreading of both on- and off-shore wind turbine towers. Regarding reinforced concrete shallow foundations of onshore wind turbine steel towers, possible reductions of reinforcement may increase their sustainability, speed of erection, and competitiveness. The article presents the results of an experimental program carried out at Politecnico di Milano concerning both cyclic and monotonic loading, simulating extreme wind conditions on 1:15 scaled models of wind turbine steel towers connected by stud bolt adapters to reinforced concrete shallow foundations embedded in a sandy soil. Three couples of foundation specimens were tested with different reinforcement layouts: (a) similar to current praxis, (b) without shear reinforcement, and (c) without shear reinforcement and with 50% of ordinary steel rebars replaced by steel fibers. Additional vertical loads were added to the small-scale models in order to ensure similarity in terms of stresses. The test results allowed to (i) characterize the mechanical behavior of the foundation element considering soil-structure interaction under both service and ultimate load conditions, (ii) assess the foundation failure mode, (iii) highlight the role of each typology of reinforcing bars forming the cage, and (iv) provide hints for the optimization of these latter

    Honey Bees (Apis mellifera, L.) as Active Samplers of Airborne Particulate Matter

    Get PDF
    © 2015 Negri et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. [CC by 4.0] The attached file is the published version of the article

    Some analytical models of radiating collapsing spheres

    Get PDF
    We present some analytical solutions to the Einstein equations, describing radiating collapsing spheres in the diffusion approximation. Solutions allow for modeling physical reasonable situations. The temperature is calculated for each solution, using a hyperbolic transport equation, which permits to exhibit the influence of relaxational effects on the dynamics of the system.Comment: 17 pages Late

    Lemaitre-Tolman-Bondi dust spacetimes: Symmetry properties and some extensions to the dissipative case

    Full text link
    We consider extensions of Lemaitre-Tolman-Bondi (LTB) spacetimes to the dissipative case. For doing that we previously carry out a systematic study on LTB. This study is based on two different aspects of LTB. On the one hand, a symmetry property of LTB will be presented. On the other hand, the description of LTB in terms of some fundamental scalar functions (structure scalars) appearing in the orthogonal splitting of Riemann tensor will be provided. We shall consider as "natural" generalizations of LTB (hereafter referred to as GLTB) either those metrics admitting some similar kind of symmetry as LTB, or those sharing structure scalars with similar dependence on the metric.Comment: 13 pages RevTex. To appear in Phys. Rev. D. Some references corrected and update

    Thermodynamics and Kinetic Theory of Relativistic Gases in 2-D Cosmological Models

    Get PDF
    A kinetic theory of relativistic gases in a two-dimensional space is developed in order to obtain the equilibrium distribution function and the expressions for the fields of energy per particle, pressure, entropy per particle and heat capacities in equilibrium. Furthermore, by using the method of Chapman and Enskog for a kinetic model of the Boltzmann equation the non-equilibrium energy-momentum tensor and the entropy production rate are determined for a universe described by a two-dimensional Robertson-Walker metric. The solutions of the gravitational field equations that consider the non-equilibrium energy-momentum tensor - associated with the coefficient of bulk viscosity - show that opposed to the four-dimensional case, the cosmic scale factor attains a maximum value at a finite time decreasing to a "big crunch" and that there exists a solution of the gravitational field equations corresponding to a "false vacuum". The evolution of the fields of pressure, energy density and entropy production rate with the time is also discussed.Comment: 23 pages, accepted in PR

    Radiating Shear-Free Gravitational Collapse with Charge

    Full text link
    We present a new shear free model for the gravitational collapse of a spherically symmetric charged body. We propose a dissipative contraction with radiation emitted outwards. The Einstein field equations, using the junction conditions and an ansatz, are integrated numerically. A check of the energy conditions is also performed. We obtain that the charge delays the black hole formation and it can even halt the collapse.Comment: 22 pages, 9 figures. It has been corrected several typos and included several references. Accepted for publication in GR

    Collapsing Spheres Satisfying An "Euclidean Condition"

    Full text link
    We study the general properties of fluid spheres satisfying the heuristic assumption that their areas and proper radius are equal (the Euclidean condition). Dissipative and non-dissipative models are considered. In the latter case, all models are necessarily geodesic and a subclass of the Lemaitre-Tolman-Bondi solution is obtained. In the dissipative case solutions are non-geodesic and are characterized by the fact that all non-gravitational forces acting on any fluid element produces a radial three-acceleration independent on its inertial mass.Comment: 1o pages, Latex. Title changed and text shortened to fit the version to appear in Gen.Rel.Grav
    corecore