92 research outputs found

    Relations between Abs-Normal NLPs and MPCCs. Part 1: Strong Constraint Qualifications

    Full text link
    This work is part of an ongoing effort of comparing non-smooth optimization problems in abs-normal form to MPCCs. We study the general abs-normal NLP with equality and inequality constraints in relation to an equivalent MPCC reformulation. We show that kink qualifications and MPCC constraint qualifications of linear independence type and Mangasarian-Fromovitz type are equivalent. Then we consider strong stationarity concepts with first and second order optimality conditions, which again turn out to be equivalent for the two problem classes. Throughout we also consider specific slack reformulations suggested in [9], which preserve constraint qualifications of linear independence type but not of Mangasarian-Fromovitz type

    Relations between Abs-Normal NLPs and MPCCs. Part 2: Weak Constraint Qualifications

    Full text link
    This work continues an ongoing effort to compare non-smooth optimization problems in abs-normal form to Mathematical Programs with Complementarity Constraints (MPCCs). We study general Nonlinear Programs with equality and inequality constraints in abs-normal form, so-called Abs-Normal NLPs, and their relation to equivalent MPCC reformulations. We introduce the concepts of Abadie's and Guignard's kink qualification and prove relations to MPCC-ACQ and MPCC-GCQ for the counterpart MPCC formulations. Due to non-uniqueness of a specific slack reformulation suggested in [10], the relations are non-trivial. It turns out that constraint qualifications of Abadie type are preserved. We also prove the weaker result that equivalence of Guginard's (and Abadie's) constraint qualifications for all branch problems hold, while the question of GCQ preservation remains open. Finally, we introduce M-stationarity and B-stationarity concepts for abs-normal NLPs and prove first order optimality conditions corresponding to MPCC counterpart formulations

    High frequency of mitochondrial genome instability in human endometrial carcinomas

    Get PDF
    To investigate the occurrence of somatic mitochondrial DNA (mtDNA) mutations in human primary endometrial carcinomas, we sequenced the D-loop region, the 12S and 16S rRNA genes of mtDNA of cancer tissues and their matched normal controls. About 56% (28 out of 50) of cases carry one or more somatic changes in mtDNA including deletion, point mutation and mitochondrial microsatellite instability (mtMSI), namely the change in length of short base-repetitive sequences of mtDNA. In particular, mtMSI was frequently detected in 89% (25 out of 28) of all the cases carrying somatic changes followed by point mutations (25%; seven out of 28) and deletion (3.5%; one out of 28). The CCCCCTCCCC sequences located in the Hypervariable Regions I and II of the D-loop and 12S rRNA gene are instability hot spot regions in endometrial carcinomas. It is suggested that errors in replication may account for the high frequency of mtMSI in human endometrial carcinomas. The relatively high prevalence of mtMSI may be a potential new tool for detection of endometrial cancer. © 2003 Cancer Research UK.link_to_subscribed_fulltex

    Dynamics of mitochondrial heteroplasmy in three families investigated via a repeatable re-sequencing study

    Get PDF
    Background: Originally believed to be a rare phenomenon, heteroplasmy - the presence of more than one mitochondrial DNA (mtDNA) variant within a cell, tissue, or individual - is emerging as an important component of eukaryotic genetic diversity. Heteroplasmies can be used as genetic markers in applications ranging from forensics to cancer diagnostics. Yet the frequency of heteroplasmic alleles may vary from generation to generation due to the bottleneck occurring during oogenesis. Therefore, to understand the alterations in allele frequencies at heteroplasmic sites, it is of critical importance to investigate the dynamics of maternal mtDNA transmission. Results: Here we sequenced, at high coverage, mtDNA from blood and buccal tissues of nine individuals from three families with a total of six maternal transmission events. Using simulations and re-sequencing of clonal DNA, we devised a set of criteria for detecting polymorphic sites in heterogeneous genetic samples that is resistant to the noise originating from massively parallel sequencing technologies. Application of these criteria to nine human mtDNA samples revealed four heteroplasmic sites. Conclusions: Our results suggest that the incidence of heteroplasmy may be lower than estimated in some other recent re-sequencing studies, and that mtDNA allelic frequencies differ significantly both between tissues of the same individual and between a mother and her offspring. We designed our study in such a way that the complete analysis described here can be repeated by anyone either at our site or directly on the Amazon Cloud. Our computational pipeline can be easily modified to accommodate other applications, such as viral re-sequencing

    Significance of somatic mutations and content alteration of mitochondrial DNA in esophageal cancer

    Get PDF
    BACKGROUND: The roles of mitochondria in energy metabolism, the generation of ROS, aging, and the initiation of apoptosis have implicated their importance in tumorigenesis. In this study we aim to establish the mutation spectrum and to understand the role of somatic mtDNA mutations in esophageal cancer. METHODS: The entire mitochondrial genome was screened for somatic mutations in 20 pairs (18 esophageal squamous cell carcinomas, one adenosquamous carcinoma and one adenocarcinoma) of tumor/surrounding normal tissue of esophageal cancers, using temporal temperature gradient gel electrophoresis (TTGE), followed by direct DNA sequencing to identify the mutations. RESULTS: Fourteen somatic mtDNA mutations were identified in 55% (11/20) of tumors analyzed, including 2 novel missense mutations and a frameshift mutation in ND4L, ATP6 subunit, and ND4 genes respectively. Nine mutations (64%) were in the D-loop region. Numerous germline variations were found, at least 10 of them were novel and five were missense mutations, some of them occurred in evolutionarily conserved domains. Using real-time quantitative PCR analysis, the mtDNA content was found to increase in some tumors and decrease in others. Analysis of molecular and other clinicopathological findings does not reveal significant correlation between somatic mtDNA mutations and mtDNA content, or between mtDNA content and metastatic status. CONCLUSION: Our results demonstrate that somatic mtDNA mutations in esophageal cancers are frequent. Some missense and frameshift mutations may play an important role in the tumorigenesis of esophageal carcinoma. More extensive biochemical and molecular studies will be necessary to determine the pathological significance of these somatic mutations

    Clinicopathological significance of mitochondrial D-Loop mutations in head and neck carcinoma

    Get PDF
    Mitochondrial DNA mutations have been reported in several types of tumours, including head and neck squamous cell carcinoma (HNSCC). The noncoding region of the Displacement-Loop (D-Loop) has emerged as a mutational hotspot and we recently found that they were associated with prognosis and response to 5 fluorouracil (5FU) in colon cancers. In order to evaluate the frequence of D-Loop mutations in a large series of HNSCC and establish correlations with clinicopathologic parameters, we sequenced the D-Loop of 109 HNSCC before a treatment by neoadjuvant 5FU-cisplatin-based chemotherapy and surgery. Then, we correlated these mutations with prognosis and response to chemotherapy. A D-Loop mutation was identified in 21% of the tumors, the majority of them were located in a C-tract (D310). The prevalence of D310 mutations increased significantly with the number of cytosines in the matched normal tissue sequence (P=0.02). Hypopharyngeal cancer was significantly more frequent (P=0.03) and tobacco consumption more important (P=0.01) in the group of patients with D-Loop mutation. The presence of D-Loop mutation was not associated with prognosis or with response to neoadjuvant chemotherapy. These results suggest that D-Loop mutations should be considered as a cancer biomarker that may be useful for the early detection of HNSCC in individuals at risk of this cancer

    Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy

    Get PDF
    Background: Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic) diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. Methods: To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. Results: The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2), 3-oxoacid-CoA transferase 1 (OXCT1) and acetyl-CoA acetyltransferase 1 (ACAT1) were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1alpha (HIF-1alpha) pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. Conclusion: In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic agents that efficiently target non-oxidative pathways

    Targeting mTORC1 is an effective strategy to inhibit meningioma cell tumorigenicity

    No full text

    Potential Role of Epithelial to Mesenchymal Transition in Meningioma

    No full text
    corecore