32 research outputs found

    Automated pattern analysis in gesture research : similarity measuring in 3D motion capture models of communicative action

    Get PDF
    The question of how to model similarity between gestures plays an important role in current studies in the domain of human communication. Most research into recurrent patterns in co-verbal gestures – manual communicative movements emerging spontaneously during conversation – is driven by qualitative analyses relying on observational comparisons between gestures. Due to the fact that these kinds of gestures are not bound to well-formedness conditions, however, we propose a quantitative approach consisting of a distance-based similarity model for gestures recorded and represented in motion capture data streams. To this end, we model gestures by flexible feature representations, namely gesture signatures, which are then compared via signature-based distance functions such as the Earth Mover's Distance and the Signature Quadratic Form Distance. Experiments on real conversational motion capture data evidence the appropriateness of the proposed approaches in terms of their accuracy and efficiency. Our contribution to gesture similarity research and gesture data analysis allows for new quantitative methods of identifying patterns of gestural movements in human face-to-face interaction, i.e., in complex multimodal data sets

    Automated pattern analysis in gesture research : similarity measuring in 3D motion capture models of communicative action

    Get PDF
    The question of how to model similarity between gestures plays an important role in current studies in the domain of human communication. Most research into recurrent patterns in co-verbal gestures – manual communicative movements emerging spontaneously during conversation – is driven by qualitative analyses relying on observational comparisons between gestures. Due to the fact that these kinds of gestures are not bound to well-formedness conditions, however, we propose a quantitative approach consisting of a distance-based similarity model for gestures recorded and represented in motion capture data streams. To this end, we model gestures by flexible feature representations, namely gesture signatures, which are then compared via signature-based distance functions such as the Earth Mover's Distance and the Signature Quadratic Form Distance. Experiments on real conversational motion capture data evidence the appropriateness of the proposed approaches in terms of their accuracy and efficiency. Our contribution to gesture similarity research and gesture data analysis allows for new quantitative methods of identifying patterns of gestural movements in human face-to-face interaction, i.e., in complex multimodal data sets

    Sequential approach to joint flow-seismic inversion for improved characterization of fractured media

    Get PDF
    Seismic interpretation of subsurface structures is traditionally performed without any account of flow behavior. Here we present a methodology for characterizing fractured geologic reservoirs by integrating flow and seismic data. The key element of the proposed approach is the identification—within the inversion—of the intimate relation between fracture compliance and fracture transmissivity, which determine the acoustic and flow responses of a fractured reservoir, respectively. Owing to the strong (but highly uncertain) dependence of fracture transmissivity on fracture compliance, the modeled flow response in a fractured reservoir is highly sensitive to the geophysical interpretation. By means of synthetic models, we show that by incorporating flow data (well pressures and tracer breakthrough curves) into the inversion workflow, we can simultaneously reduce the error in the seismic interpretation and improve predictions of the reservoir flow dynamics. While the inversion results are robust with respect to noise in the data for this synthetic example, the applicability of the methodology remains to be tested for more complex synthetic models and field cases.Eni-MIT Energy Initiative Founding Member ProgramKorea (South). Ministry of Land, Transportation and Maritime Affairs (15AWMP-B066761-03

    The importance of understanding individual differences in Down syndrome

    Get PDF
    In this article, we first present a summary of the general assumptions about Down syndrome (DS) still to be found in the literature. We go on to show how new research has modified these assumptions, pointing to a wide range of individual differences at every level of description. We argue that, in the context of significant increases in DS life expectancy, a focus on individual differences in trisomy 21 at all levels—genetic, cellular, neural, cognitive, behavioral, and environmental—constitutes one of the best approaches for understanding genotype/phenotype relations in DS and for exploring risk and protective factors for Alzheimer’s disease in this high-risk population

    Automated pattern analysis in gesture research : similarity measuring in 3D motion capture models of communicative action

    No full text
    The question of how to model similarity between gestures plays an important role in current studies in the domain of human communication. Most research into recurrent patterns in co-verbal gestures – manual communicative movements emerging spontaneously during conversation – is driven by qualitative analyses relying on observational comparisons between gestures. Due to the fact that these kinds of gestures are not bound to well-formedness conditions, however, we propose a quantitative approach consisting of a distance-based similarity model for gestures recorded and represented in motion capture data streams. To this end, we model gestures by flexible feature representations, namely gesture signatures, which are then compared via signature-based distance functions such as the Earth Mover's Distance and the Signature Quadratic Form Distance. Experiments on real conversational motion capture data evidence the appropriateness of the proposed approaches in terms of their accuracy and efficiency. Our contribution to gesture similarity research and gesture data analysis allows for new quantitative methods of identifying patterns of gestural movements in human face-to-face interaction, i.e., in complex multimodal data sets

    Steady state lateral water flow through unsaturated soil layers

    No full text
    The effects of gravity on flow through variably saturated soil layers are investigated quantitatively using two new analytical solutions and a numerical model. In all cases, steady state flow occurs laterally through a tilted, rectangular layer of soil with a constant hydraulic head on either end. The first solution is for gravity-driven flow through a tilted layer with sublayering parallel to the slope. As intuitively suggested by earlier investigators, flow occurs parallel to the floor of the layer and the pressure head is a simple function of the normal distance from the floor of the layer. The second analytical solution is for a tilted soil layer described by a Gardner soil model with both gravity and pressure head gradients. Flow velocities remain parallel to the layer floor, which is confirmed by numerical simulations. This is in contrast with chosen non-Gardner examples for which the flow does not necessarily remain parallel to the floor. Copyright 2008 by the American Geophysical Union.Full Tex
    corecore