5,260 research outputs found

    Flowfield analysis for successive oblique shock wave-turbulent boundary layer interactions

    Get PDF
    A computation procedure is described for predicting the flowfields which develop when successive interactions between oblique shock waves and a turbulent boundary layer occur. Such interactions may occur, for example, in engine inlets for supersonic aircraft. Computations are carried out for axisymmetric internal flows at M 3.82 and 2.82. The effect of boundary layer bleed is considered for the M 2.82 flow. A control volume analysis is used to predict changes in the flow field across the interactions. Two bleed flow models have been considered. A turbulent boundary layer program is used to compute changes in the boundary layer between the interactions. The results given are for flows with two shock wave interactions and for bleed at the second interaction site. In principle the method described may be extended to account for additional interactions. The predicted results are compared with measured results and are shown to be in good agreement when the bleed flow rate is low (on the order of 3% of the boundary layer mass flow), or when there is no bleed. As the bleed flow rate is increased, differences between the predicted and measured results become larger. Shortcomings of the bleed flow models at higher bleed flow rates are discussed

    A wall-wake velocity profile for turbulent compressible boundary layers with heat transfer

    Get PDF
    A modified form of the wall-wake profile which is applicable to flows with heat transfer is presented. The modified profile takes into account the effect of a turbulent Prandtl number; it was found to provide a good representation of the experimental data from several sources. The C sub f values which are determined by a least squares fit of the profile to the data agree well with values which were measured by the floating element technique

    Calculation of turbulent shear stress in supersonic boundary layer flows

    Get PDF
    An analysis of turbulent boundary layer flow characteristics and the computational procedure used are discussed. The integrated mass and momentum flux profiles and differentials of the integral quantities are used in the computations so that local evaluation of the streamwise velocity gradient is not necessary. The computed results are compared with measured shear stress data obtained by using hot wire anemometer and laser velocimeter techniques. The flow measurements were made upstream and downstream of an adiabatic unseparated interaction of an oblique shock wave with the turbulent boundary layer on the flat wall of a two dimensional wind tunnel. A comparison of the numerical analysis and actual measurements is made and the effects of small differences in mean flow profiles on the computed shear stress distributions are discussed

    Calculation of turbulent shear stress in supersonic boundary layer flows

    Get PDF
    Turbulent shear stress distributions for supersonic boundary layer flows have been computed from experimental mean boundary layer data. The computations have been made by numerically integrating the time averaged continuity and streamwise momentum equations. Distributions have been obtained for flows upstream and downstream of shock-wave-boundary layer interactions and for both two-dimensional and axisymmetric flows. The computed results are compared with recently reported shear stress measurements which were obtained by hot wire anemometer and laser velocimeter techniques

    Accumulator for shaft encoder

    Get PDF
    Digital accumulator relies almost entirely on integrated circuitry to process the data derived from the outputs of gyro shaft encoder. After the read command is given, the output register collects and stores the data that are on the set output terminals of the up-down counters

    Analysis and testing for rotordynamic coefficients of turbulent annular seals with different, directionally homogeneous surface-roughness treatment for rotor and stator elements

    Get PDF
    A theory is presented, based on a simple modification of Hirs' turbulent lubrication equations, to account for different but directionally-homogeneous surface roughness treatments for the rotor and stator of annular seals. The theoretical results agree with von Pragenau's predictions that a damper seal which uses a smooth rotor and a rough stator yields more net damping than a conventional seal which has the same roughness for both the rotor and stator. Experimental results for four stators confirm that properly-designed roughened stators yield higher net damping values and substantially less leakage than seals with smooth surfaces. The best seal from both damping and leakage viewpoints uses a round-hole-pattern stator. Initial results for this stator suggest that, within limits, seals can be designed to yield specified ratios of stiffness to damping

    Can shared surfaces be safely negotiated by blind and partially sighted people?

    Get PDF
    ‘Shared Space’ schemes are designed to remove the physical distinction between pedestrian space and traffic space in the street environment to encourage more pedestrians to use the area. They may also make it easier for people with wheelchairs, prams or similar to negotiate the space. However, by removing the kerbs, blind and partially sighted people lose one of the key references that they normally use to know they are in a safe space away from vehicles and to navigate around the area. This study is intended to understand what people with visual impairments need from a surface to make it clearly detectable, given that it should not be a barrier to progress for people with other mobility limitations. With this information, some surfaces were tested to determine their suitability as a delineator. Approach and/or Methodology An experimental approach was adopted. People with mobility impairments and blind and partially sighted people were recruited. All participants used the normal street environment unaccompanied. The blind and partially sighted participants included people who use a guide dog, those who use a long cane and those who use no assistive device. The people with mobility impairments all used some form of mobility aid for example walking stick or wheelchair. The tests were run in the pedestrian testing facility PAMELA at UCL. The top surface of the test facility was predominantly concrete paving slab, but with test surfaces discretely located. The task for all participants was to travel from one designated place in the test area to another. For some of these trials the participant would encounter one of the test surfaces, but on other trials they would not. After each trial the participants were asked to rate how easy it was to detect a change in surface, or how easy it was to pass over the surface. The different surfaces included blister paving, corduroy paving, a central delineator, slopes, roughened surfaces, and traditional kerb upstands of different heights. Results or Expected Results None of the 400mm wide surfaces was detected by all participants. Changes in level through slopes were considered both positively and negatively, some people asking for steeper gradients and some less steep. Kerb heights below 60mm were not reliably detectable by blind or partially sighted people and are an obstacle to people in wheelchairs. Further tests on more surfaces are in process and the results will be incorporated into this paper. Conclusion Early suggestions for detectable surfaces – proposed in UK schemes - have been either a barrier to people with mobility impairments, or difficult to detect for blind and partially sighted people or both. The work presented in this paper shows the difficulty in finding a suitable dual purpose surface, yet clarifies the design requirements for shared space delineators for people with mobility impairments and blind or partially sighted people. This work has reinforced the point that 400mm width is insufficient to be used as a tactile surface. Further conclusions will be made after the additional surface tests. Topic Code: Ca C. Accessibility concerns and solutions for those with cognitive and sensory impairment a. Pedestrian safety at crossings and intersection
    • …
    corecore