922 research outputs found
Belief propagation algorithm for computing correlation functions in finite-temperature quantum many-body systems on loopy graphs
Belief propagation -- a powerful heuristic method to solve inference problems
involving a large number of random variables -- was recently generalized to
quantum theory. Like its classical counterpart, this algorithm is exact on
trees when the appropriate independence conditions are met and is expected to
provide reliable approximations when operated on loopy graphs. In this paper,
we benchmark the performances of loopy quantum belief propagation (QBP) in the
context of finite-tempereture quantum many-body physics. Our results indicate
that QBP provides reliable estimates of the high-temperature correlation
function when the typical loop size in the graph is large. As such, it is
suitable e.g. for the study of quantum spin glasses on Bethe lattices and the
decoding of sparse quantum error correction codes.Comment: 5 pages, 4 figure
Ictal SPECT in Sturge-Weber syndrome
We report on a patient with right-sided Sturge-Weber syndrome (SWS), in whom earlier functional hemispherectomy failed. Subtraction of ictal and interictal single-photon-emission-computed-tomography (SPECT) superimposed on individual MRI showed a right fronto-orbital hyperperfusion, with a left-sided EEG seizure pattern. Ictal SPECT supported our assumption that right frontal originated seizure pattern propagated to left hemisphere via the remaining right frontal bridge. Right orbito-frontal resection and disconnection from corpus callosum resulted in seizure freedom
A comparison of epidemic algorithms in wireless sensor networks
Cataloged from PDF version of article.We consider the problem of reliable data dissemination in the context of wireless sensor networks. For some application scenarios, reliable data dissemination to all nodes is necessary for propagating code updates, queries, and other sensitive information in wireless sensor networks. Epidemic algorithms are a natural approach for reliable distribution of information in such ad hoc, decentralized, and dynamic environments. In this paper we show the applicability of epidemic algorithms in the context of wireless sensor environments, and provide a comparative performance analysis of the three variants of epidemic algorithms in terms of message delivery rate, average message latency, and messaging overhead on the network. © 2006 Elsevier B.V. All rights reserved
A combined anatomical variation of inferior epigastric vessels
During the routine anatomical dissection of a male cadaver, a variation was observed both in the inferior epigastric artery (IEA) and inferior epiastric vein (IEV). Although the origin of the IEA from the right femoral artery (FA) is common variation in this case, the right IEA originated from the RFA, 13 mm inferior to inguinal ligament. The artery didn’t course anterior to the femoral vein (FV) as described in the variations of this vessel; instead, coursed on the lateral side of the variant IEV. Additionally, in this cadaver, the single right IEV drained to RFV 8 mm inferior to inguinal ligament. Both the variant artery and vein passed posterior to spermatic cord and their course in the rectus sheath were normal in every aspect. Due to its clinical importance, this combined anatomical variation must be remembered by the surgeons
Cell-graph mining for breast tissue modeling and classification
We consider the problem of automated cancer diagnosis in the context of breast tissues. We present graph theoretical techniques that identify and compute quantitative metrics for tissue characterization and classification. We segment digital images of histopatological tissue samples using k-means algorithm. For each segmented image we generate different cell-graphs using positional coordinates of cells and surrounding matrix components. These cell-graphs have 500-2000 cells(nodes) with 1000-10000 links depending on the tissue and the type of cell-graph being used. We calculate a set of global metrics from cell-graphs and use them as the feature set for learning. We compare our technique, hierarchical cell graphs, with other techniques based on intensity values of images, Delaunay triangulation of the cells, the previous technique we proposed for brain tissue images and with the hybrid approach that we introduce in this paper. Among the compared techniques, hierarchical-graph approach gives 81.8% accuracy whereas we obtain 61.0%, 54.1% and 75.9% accuracy with intensity-based features, Delaunay triangulation and our previous technique, respectively. © 2007 IEEE
Multiscale Feature Analysis of Salivary Gland Branching Morphogenesis
Pattern formation in developing tissues involves dynamic spatio-temporal changes in cellular organization and subsequent evolution of functional adult structures. Branching morphogenesis is a developmental mechanism by which patterns are generated in many developing organs, which is controlled by underlying molecular pathways. Understanding the relationship between molecular signaling, cellular behavior and resulting morphological change requires quantification and categorization of the cellular behavior. In this study, tissue-level and cellular changes in developing salivary gland in response to disruption of ROCK-mediated signaling by are modeled by building cell-graphs to compute mathematical features capturing structural properties at multiple scales. These features were used to generate multiscale cell-graph signatures of untreated and ROCK signaling disrupted salivary gland organ explants. From confocal images of mouse submandibular salivary gland organ explants in which epithelial and mesenchymal nuclei were marked, a multiscale feature set capturing global structural properties, local structural properties, spectral, and morphological properties of the tissues was derived. Six feature selection algorithms and multiway modeling of the data was performed to identify distinct subsets of cell graph features that can uniquely classify and differentiate between different cell populations. Multiscale cell-graph analysis was most effective in classification of the tissue state. Cellular and tissue organization, as defined by a multiscale subset of cell-graph features, are both quantitatively distinct in epithelial and mesenchymal cell types both in the presence and absence of ROCK inhibitors. Whereas tensor analysis demonstrate that epithelial tissue was affected the most by inhibition of ROCK signaling, significant multiscale changes in mesenchymal tissue organization were identified with this analysis that were not identified in previous biological studies. We here show how to define and calculate a multiscale feature set as an effective computational approach to identify and quantify changes at multiple biological scales and to distinguish between different states in developing tissues
Coupled Analysis of In Vitro and Histology Tissue Samples to Quantify Structure-Function Relationship
The structure/function relationship is fundamental to our understanding of biological systems at all levels, and drives most, if not all, techniques for detecting, diagnosing, and treating disease. However, at the tissue level of biological complexity we encounter a gap in the structure/function relationship: having accumulated an extraordinary amount of detailed information about biological tissues at the cellular and subcellular level, we cannot assemble it in a way that explains the correspondingly complex biological functions these structures perform. To help close this information gap we define here several quantitative temperospatial features that link tissue structure to its corresponding biological function. Both histological images of human tissue samples and fluorescence images of three-dimensional cultures of human cells are used to compare the accuracy of in vitro culture models with their corresponding human tissues. To the best of our knowledge, there is no prior work on a quantitative comparison of histology and in vitro samples. Features are calculated from graph theoretical representations of tissue structures and the data are analyzed in the form of matrices and higher-order tensors using matrix and tensor factorization methods, with a goal of differentiating between cancerous and healthy states of brain, breast, and bone tissues. We also show that our techniques can differentiate between the structural organization of native tissues and their corresponding in vitro engineered cell culture models
- …