2,099 research outputs found
pdFOAM: A PIC-DSMC code for near-earth plasma-body interactions
Understanding the interaction of the near-Earth space environment with orbiting bodies is critical, both from a design and scientific perspective. In Low Earth Orbit (LEO), the interaction between the Ionosphere and orbiting objects is well studied from a charging perspective. Not well understood is the effect of the Ionosphere on the motion of LEO objects i.e. charged aerodynamics. This paper presents the implementation, validation, and verification of the hybrid electrostatic Particle-in-Cell (PIC) - Direct Simulation Monte Carlo (DSMC) code, pdFOAM, to study both the neutral and charged particle aerodynamics of LEO objects. The 2D aerodynamic interaction of a cylinder with a fixed uniform surface potential of −50 V in mesothermal O+ and H+ plasmas representative of ionospheric conditions is investigated. New insights into the role of bounded ion jets and their effect on surface forces are presented. O+ bounded ion jets are observed to cause a 4.4% increase in direct Charged Particle Drag (dCPD), while H+ ion jets produce a net reduction in H+ dCPD by 23.7% i.e. they cause a thrust force. As a result, this paper concludes the study of charged aerodynamics in LEO requires a self-consistent modelling tool, such as pdFOAM
The mixed problem in L^p for some two-dimensional Lipschitz domains
We consider the mixed problem for the Laplace operator in a class of
Lipschitz graph domains in two dimensions with Lipschitz constant at most 1.
The boundary of the domain is decomposed into two disjoint sets D and N. We
suppose the Dirichlet data, f_D has one derivative in L^p(D) of the boundary
and the Neumann data is in L^p(N). We find conditions on the domain and the
sets D and N so that there is a p_0>1 so that for p in the interval (1,p_0), we
may find a unique solution to the mixed problem and the gradient of the
solution lies in L^p
Hadronic effects in leptonic systems: muonium hyperfine structure and anomalous magnetic moment of muon
Contributions of hadronic effects to the muonium physics and anomalous
magnetic moment of muon are considered. Special attention is paid to
higher-order effects and the uncertainty related to the hadronic contribution
to the hyperfine structure interval in the ground state of muonium.Comment: Presented at PSAS 2002 (St. Petersburg
Can black holes be torn up by phantom dark energy in cyclic cosmology?
Infinitely cyclic cosmology is often frustrated by the black hole problem. It
has been speculated that this obstacle in cyclic cosmology can be removed by
taking into account a peculiar cyclic model derived from loop quantum cosmology
or the braneworld scenario, in which phantom dark energy plays a crucial role.
In this peculiar cyclic model, the mechanism of solving the black hole problem
is through tearing up black holes by phantom. However, using the theory of
fluid accretion onto black holes, we show in this paper that there exists
another possibility: that black holes cannot be torn up by phantom in this
cyclic model. We discussed this possibility and showed that the masses of black
holes might first decrease and then increase, through phantom accretion onto
black holes in the expanding stage of the cyclic universe.Comment: 6 pages, 2 figures; discussions adde
Feedback control of spin systems
The feedback stabilization problem for ensembles of coupled spin 1/2 systems
is discussed from a control theoretic perspective. The noninvasive nature of
the bulk measurement allows for a fully unitary and deterministic closed loop.
The Lyapunov-based feedback design presented does not require spins that are
selectively addressable. With this method, it is possible to obtain control
inputs also for difficult tasks, like suppressing undesired couplings in
identical spin systems.Comment: 16 pages, 15 figure
Pair creation of anti-de Sitter black holes on a cosmic string background
We analyze the quantum process in which a cosmic string breaks in an anti-de
Sitter (AdS) background, and a pair of charged or neutral black holes is
produced at the ends of the strings. The energy to materialize and accelerate
the pair comes from the strings tension. In an AdS background this is the only
study done in the process of production of a pair of correlated black holes
with spherical topology. The acceleration of the produced black holes is
necessarily greater than (|L|/3)^(1/2), where L<0 is the cosmological constant.
Only in this case the virtual pair of black holes can overcome the attractive
background AdS potential well and become real. The instantons that describe
this process are constructed through the analytical continuation of the AdS
C-metric. Then, we explicitly compute the pair creation rate of the process,
and we verify that (as occurs with pair creation in other backgrounds) the pair
production of nonextreme black holes is enhanced relative to the pair creation
of extreme black holes by a factor of exp(Area/4), where Area is the black hole
horizon area. We also conclude that the general behavior of the pair creation
rate with the mass and acceleration of the black holes is similar in the AdS,
flat and de Sitter cases, and our AdS results reduce to the ones of the flat
case when L=0.Comment: 13 pages, 3 figures, ReVTeX
"Sex, Lies, and Videotape": Attitudes toward the Clinton Impeachment
Students in an undergraduate Political Science class at Kent State University performed a Q sort concerning the Clinton/Lewinsky scandal, and each administered it to two other persons, for a total of n=47. Another n=26 Q sorts were obtained from students at Westminster College. The two sets of Q sorts were analyzed separately, the Kent sample producing four factors, the Westminster sample producing three. Refactoring the data indicated that the three Westminster factors matched three of the Kent factors almost exactly. Factor A provides an anti-Clinton, Conservative “spin†on the scandal. Factor B is willing to hold Clinton responsible for his actions, but maintain that those seeking impeachment are overreacting to the situation. Factor C, a bipolar factor, represents an indignation-cynicism dichotomy, with those at one end of the factor reacting moralistically, while those on the other end are cynical toward the political process more generally. Finally, Factor D was found only among the Kent respondents, and was comprised mostly of liberal Democrats. The major theme of Factor D was that Clinton’s private life should be of little concern to the public, and that the President’s political opponents exploited the crisis.
The study helps to clarify views of the scandal that confounded pundits who seemed confused in reading polling data. During much of the scandal the public expressed dismay at Clinton’s behavior, while simultaneously endorsing his performance as president. These results reveal that the categories of Democrats vs. Republicans are far too crude to capture the realities of the public’s reactions in light of the more subtle and nuanced reactions of the factors in this study
Anthropogenic Space Weather
Anthropogenic effects on the space environment started in the late 19th
century and reached their peak in the 1960s when high-altitude nuclear
explosions were carried out by the USA and the Soviet Union. These explosions
created artificial radiation belts near Earth that resulted in major damages to
several satellites. Another, unexpected impact of the high-altitude nuclear
tests was the electromagnetic pulse (EMP) that can have devastating effects
over a large geographic area (as large as the continental United States). Other
anthropogenic impacts on the space environment include chemical release ex-
periments, high-frequency wave heating of the ionosphere and the interaction of
VLF waves with the radiation belts. This paper reviews the fundamental physical
process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure
Curvature corrections and Kac-Moody compatibility conditions
We study possible restrictions on the structure of curvature corrections to
gravitational theories in the context of their corresponding Kac--Moody
algebras, following the initial work on E10 in Class. Quant. Grav. 22 (2005)
2849. We first emphasize that the leading quantum corrections of M-theory can
be naturally interpreted in terms of (non-gravity) fundamental weights of E10.
We then heuristically explore the extent to which this remark can be
generalized to all over-extended algebras by determining which curvature
corrections are compatible with their weight structure, and by comparing these
curvature terms with known results on the quantum corrections for the
corresponding gravitational theories.Comment: 27 page
Isotopic and spin selectivity of H_2 adsorbed in bundles of carbon nanotubes
Due to its large surface area and strongly attractive potential, a bundle of
carbon nanotubes is an ideal substrate material for gas storage. In addition,
adsorption in nanotubes can be exploited in order to separate the components of
a mixture. In this paper, we investigate the preferential adsorption of D_2
versus H_2(isotope selectivity) and of ortho versus para(spin selectivity)
molecules confined in the one-dimensional grooves and interstitial channels of
carbon nanotube bundles. We perform selectivity calculations in the low
coverage regime, neglecting interactions between adsorbate molecules. We find
substantial spin selectivity for a range of temperatures up to 100 K, and even
greater isotope selectivity for an extended range of temperatures,up to 300 K.
This isotope selectivity is consistent with recent experimental data, which
exhibit a large difference between the isosteric heats of D_2 and H_2 adsorbed
in these bundles.Comment: Paper submitted to Phys.Rev. B; 17 pages, 2 tables, 6 figure
- …
