45 research outputs found

    Multitrophic Interaction in the Rhizosphere of Maize: Root Feeding of Western Corn Rootworm Larvae Alters the Microbial Community Composition

    Get PDF
    BACKGROUND: Larvae of the Western Corn Rootworm (WCR) feeding on maize roots cause heavy economical losses in the US and in Europe. New or adapted pest management strategies urgently require a better understanding of the multitrophic interaction in the rhizosphere. This study aimed to investigate the effect of WCR root feeding on the microbial communities colonizing the maize rhizosphere. METHODOLOGY/PRINCIPAL FINDINGS: In a greenhouse experiment, maize lines KWS13, KWS14, KWS15 and MON88017 were grown in three different soil types in presence and in absence of WCR larvae. Bacterial and fungal community structures were analyzed by denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA gene and ITS fragments, PCR amplified from the total rhizosphere community DNA. DGGE bands with increased intensity were excised from the gel, cloned and sequenced in order to identify specific bacteria responding to WCR larval feeding. DGGE fingerprints showed that the soil type and the maize line influenced the fungal and bacterial communities inhabiting the maize rhizosphere. WCR larval feeding affected the rhiyosphere microbial populations in a soil type and maize line dependent manner. DGGE band sequencing revealed an increased abundance of Acinetobacter calcoaceticus in the rhizosphere of several maize lines in all soil types upon WCR larval feeding. CONCLUSION/SIGNIFICANCE: The effects of both rhizosphere and WCR larval feeding seemed to be stronger on bacterial communities than on fungi. Bacterial and fungal community shifts in response to larval feeding were most likely due to changes of root exudation patterns. The increased abundance of A. calcoaceticus suggested that phenolic compounds were released upon WCR wounding

    Selective progressive response of soil microbial community to wild oat roots

    Get PDF
    Roots moving through soil enact physical and chemical changes that differentiate rhizosphere from bulk soil, and the effects of these changes on soil microorganisms have long been a topic of interest. Use of a high-density 16S rRNA microarray (PhyloChip) for bacterial and archaeal community analysis has allowed definition of the populations that respond to the root within the complex grassland soil community; this research accompanies previously reported compositional changes, including increases in chitinase and protease specific activity, cell numbers and quorum sensing signal. PhyloChip results showed a significant change in 7% of the total rhizosphere microbial community (147 of 1917 taxa); the 7% response value was confirmed by16S rRNA T-RFLP analysis. This PhyloChip-defined dynamic subset was comprised of taxa in 17 of the 44 phyla detected in all soil samples. Expected rhizosphere-competent phyla, such as Proteobacteria and Firmicutes, were well represented, as were less-well-documented rhizosphere colonizers including Actinobacteria, Verrucomicrobia and Nitrospira. Richness of Bacteroidetes and Actinobacteria decreased in soil near the root tip compared to bulk soil, but then increased in older root zones. Quantitative PCR revealed {beta}-Proteobacteria and Actinobacteria present at about 10{sup 8} copies of 16S rRNA genes g{sup -1} soil, with Nitrospira having about 10{sup 5} copies g{sup -1} soil. This report demonstrates that changes in a relatively small subset of the soil microbial community are sufficient to produce substantial changes in function in progressively more mature rhizosphere zones
    corecore