2,491 research outputs found

    Invariant approach to flavour-dependent CP-violating phases in the MSSM

    Get PDF
    We use a new weak basis invariant approach to classify all the observable phases in any extension of the Standard Model (SM). We apply this formalism to determine the invariant CP phases in a simplified version of the Minimal Supersymmetric SM with only three non-trivial flavour structures. We propose four experimental measures to fix completely all the observable phases in the model. After these phases have been determined from experiment, we are able to make predictions on any other CP-violating observable in the theory, much in the same way as in the Standard Model all CP-violation observables are proportional to the Jarlskog invariant.Comment: 25 pages, 12 figure

    Bifurcations in the Lozi map

    Get PDF
    We study the presence in the Lozi map of a type of abrupt order-to-order and order-to-chaos transitions which are mediated by an attractor made of a continuum of neutrally stable limit cycles, all with the same period.Comment: 17 pages, 12 figure

    Flavour Changing Higgs Couplings in a Class of Two Higgs Doublet Models

    Full text link
    We analyse various flavour changing processes like thu,hct\to hu,hc, hτe,τμh\to \tau e,\tau\mu as well as hadronic decays hbs,bdh\to bs,bd, in the framework of a class of two Higgs doublet models where there are flavour changing neutral scalar currents at tree level. These models have the remarkable feature of having these flavour-violating couplings entirely determined by the CKM and PMNS matrices as well as tanβ\tan\beta. The flavour structure of these scalar currents results from a symmetry of the Lagrangian and therefore it is natural and stable under the renormalization group. We show that in some of the models the rates of the above flavour changing processes can reach the discovery level at the LHC at 13 TeV even taking into account the stringent bounds on low energy processes, in particular μeγ\mu\to e\gamma.Comment: 33 pages, 8 figures; matches version accepted for publicatio

    What if the Masses of the First Two Quark Families are not Generated by the Standard Higgs?

    Full text link
    We point out that, in the context of the SM, V132+V232|V^2_{13}| + | V^2_{23}| is expected to be large, of order one. The fact that V132+V2321.6×103|V^2_{13}| + |V^2_{23}| \approx 1.6 \times 10^{-3} motivates the introduction of a symmetry S which leads to VCKM=1 ⁣ ⁣ ⁣IV_{CKM} ={1\>\!\!\!\mathrm{I}} , with only the third generation of quarks acquiring mass. We consider two scenarios for generating the mass of the first two quark generations and full quark mixing. One consists of the introduction of a second Higgs doublet which is neutral under S. The second scenario consists of assuming New Physics at a high energy scale , contributing to the masses of light quark generations, in an effective field theory approach. This last scenario leads to couplings of the Higgs particle to sss\overline s and ccc \overline c which are significantly enhanced with respect to those of the SM. In both schemes, one has scalar-mediated flavour- changing neutral currents which are naturally suppressed. Flavour violating top decays are predicted in the second scenario at the level \mbox{Br} (t \rightarrow h c ) \geq 5\times 10^{-5}.Comment: 11 pages, 1 figur

    Controlled Flavour Changing Neutral Couplings in Two Higgs Doublet Models

    Get PDF
    We propose a class of Two Higgs Doublet Models where there are Flavour Changing Neutral Currents (FCNC) at tree level, but under control due to the introduction of a discrete symmetry in the full Lagrangian. It is shown that in this class of models, one can have simultaneously FCNC in the up and down sectors, in contrast to the situation encountered in BGL models. The intensity of FCNC is analysed and it is shown that in this class of models one can respect all the strong constraints from experiment without unnatural fine-tuning. It is pointed out that the additional sources of flavour and CP violation are such that they can enhance significantly the generation of the Baryon Asymmetry of the Universe, with respect to the Standard Model.Comment: 29 pages, 3 figure

    Vector-like Quarks at the Origin of Light Quark Masses and Mixing

    Get PDF
    We show how a novel fine-tuning problem present in the Standard Model can be solved through the introduction of a single flavour symmetry G, together with three Q=1/3Q = - 1/3 quarks, three Q=2/3Q = 2/3 quarks, as well as a complex singlet scalar. The symmetry G is extended to the additional fields and it is an exact symmetry of the Lagrangian, only spontaneously broken by the vacuum. Specific examples are given and a phenomenological analysis of the main features of the model is presented. It is shown that even for vector-like quarks with masses accessible at the LHC, one can have realistic quark masses and mixing, while respecting the strict constraints on process arising from flavour changing neutral currents (FCNC). The vector-like quark decay channels are also described.Comment: 25 pages, no figure

    Emergence of hierarchical networks and polysynchronous behaviour in simple adaptive systems

    Full text link
    We describe the dynamics of a simple adaptive network. The network architecture evolves to a number of disconnected components on which the dynamics is characterized by the possibility of differently synchronized nodes within the same network (polysynchronous states). These systems may have implications for the evolutionary emergence of polysynchrony and hierarchical networks in physical or biological systems modeled by adaptive networks.Comment: 4 pages, 4 figure

    Reparametrization invariance of B decay amplitudes and implications for new physics searches in B decays

    Get PDF
    When studying B decays within the Standard Model, it is customary to use the unitarity of the CKM matrix in order to write the decay amplitudes in terms of only two of the three weak phases which appear in the various diagrams. Occasionally, it is mentioned that those two weak phases can be used in order to describe any decay amplitude, even beyond the Standard Model. Here we point out that, when describing a generic decay amplitude, the two weak phases can be chosen completely at will, and we study the behavior of the decay amplitudes under changes in the two weak phases chosen as a basis. Of course, physical observables cannot depend on such reparametrizations. This has an impact in discussions of the SM and in attempts to parametrize new physics effects in the decay amplitudes. We illustrate these issues by looking at B --> psi K_S and the isospin analysis in B --> pi pi.Comment: 16 pages, RevTe

    Bounds on gamma from CP violation measurements in B -> pi+ pi- and B -> psi K_S

    Full text link
    We study the determination of gamma from CP-violating observables in B -> pi+ pi- and B -> psi K_S. This determination requires theoretical input to one combination of hadronic parameters. We show that a mild assumption about this quantity may allow bounds to be placed on gamma, but we stress the pernicious effects that an eightfold discrete ambiguity has on such an analysis. The bounds are discussed as a function of the direct (C) and interference (S) CP-violating observables obtained from time-dependent B -> pi+ pi- decays, and their behavior in the presence of new physics effects in B-Bbar mixing is studied. (V2: Misprints corrected. Slightly improved discussion.)Comment: 11 pages, RevTex 4, 5 eps figures include
    corecore