3 research outputs found

    Feasibility of in vivo multi-parametric quantitative magnetic resonance imaging of the healthy sciatic nerve with a unified signal readout protocol

    Get PDF
    Magnetic resonance neurography (MRN) has been used successfully over the years to investigate the peripheral nervous system (PNS) because it allows early detection and precise localisation of neural tissue damage. However, studies demonstrating the feasibility of combining MRN with multi-parametric quantitative magnetic resonance imaging (qMRI) methods, which provide more specific information related to nerve tissue composition and microstructural organisation, can be invaluable. The translation of emerging qMRI methods previously validated in the central nervous system to the PNS offers real potential to characterise in patients in vivo the underlying pathophysiological mechanisms involved in a plethora of conditions of the PNS. The aim of this study was to assess the feasibility of combining MRN with qMRI to measure diffusion, magnetisation transfer and relaxation properties of the healthy sciatic nerve in vivo using a unified signal readout protocol. The reproducibility of the multi-parametric qMRI protocol as well as normative qMRI measures in the healthy sciatic nerve are reported. The findings presented herein pave the way to the practical implementation of joint MRN-qMRI in future studies of pathological conditions affecting the PNS

    Assessing Lumbar Plexus and Sciatic Nerve Damage in Relapsing-Remitting Multiple Sclerosis Using Magnetisation Transfer Ratio

    Get PDF
    Background: Multiple sclerosis (MS) has traditionally been regarded as a disease confined to the central nervous system (CNS). However, neuropathological, electrophysiological, and imaging studies have demonstrated that the peripheral nervous system (PNS) is also involved, with demyelination and, to a lesser extent, axonal degeneration representing the main pathophysiological mechanisms. Aim: The purpose of this study was to assess PNS damage at the lumbar plexus and sciatic nerve anatomical locations in people with relapsing-remitting MS (RRMS) and healthy controls (HCs) in vivo using magnetisation transfer ratio (MTR), which is a known imaging biomarker sensitive to alterations in myelin content in neural tissue, and not previously explored in the context of PNS damage in MS. Method: Eleven HCs (7 female, mean age 33.6 years, range 24-50) and 15 people with RRMS (12 female, mean age 38.5 years, range 30-56) were recruited for this study and underwent magnetic resonance imaging (MRI) investigations together with clinical assessments using the expanded disability status scale (EDSS). Magnetic resonance neurography (MRN) was first used for visualisation and identification of the lumbar plexus and the sciatic nerve and MTR imaging was subsequently performed using identical scan geometry to MRN, enabling straightforward co-registration of all data to obtain global and regional mean MTR measurements. Linear regression models were used to identify differences in MTR values between HCs and people with RRMS and to identify an association between MTR measures and EDSS. Results: MTR values in the sciatic nerve of people with RRMS were found to be significantly lower compared to HCs, but no significant MTR changes were identified in the lumbar plexus of people with RRMS. The median EDSS in people with RRMS was 2.0 (range, 0-3). No relationship between the MTR measures in the PNS and EDSS were identified at any of the anatomical locations studied in this cohort of people with RRMS. Conclusion: The results from this study demonstrate the presence of PNS damage in people with RRMS and support the notion that these changes, suggestive of demyelination, maybe occurring independently at different anatomical locations within the PNS. Further investigations to confirm these findings and to clarify the pathophysiological basis of these alterations are warranted

    Assessing Lumbar Plexus and Sciatic Nerve Damage in Relapsing-Remitting Multiple Sclerosis Using Magnetisation Transfer Ratio

    No full text
    Background: Multiple sclerosis (MS) has traditionally been regarded as a disease confined to the central nervous system (CNS). However, neuropathological, electrophysiological, and imaging studies have demonstrated that the peripheral nervous system (PNS) is also involved, with demyelination and, to a lesser extent, axonal degeneration representing the main pathophysiological mechanisms. Aim: The purpose of this study was to assess PNS damage at the lumbar plexus and sciatic nerve anatomical locations in people with relapsing-remitting MS (RRMS) and healthy controls (HCs) in vivo using magnetisation transfer ratio (MTR), which is a known imaging biomarker sensitive to alterations in myelin content in neural tissue, and not previously explored in the context of PNS damage in MS. Method: Eleven HCs (7 female, mean age 33.6 years, range 24-50) and 15 people with RRMS (12 female, mean age 38.5 years, range 30-56) were recruited for this study and underwent magnetic resonance imaging (MRI) investigations together with clinical assessments using the expanded disability status scale (EDSS). Magnetic resonance neurography (MRN) was first used for visualisation and identification of the lumbar plexus and the sciatic nerve and MTR imaging was subsequently performed using identical scan geometry to MRN, enabling straightforward co-registration of all data to obtain global and regional mean MTR measurements. Linear regression models were used to identify differences in MTR values between HCs and people with RRMS and to identify an association between MTR measures and EDSS. Results: MTR values in the sciatic nerve of people with RRMS were found to be significantly lower compared to HCs, but no significant MTR changes were identified in the lumbar plexus of people with RRMS. The median EDSS in people with RRMS was 2.0 (range, 0-3). No relationship between the MTR measures in the PNS and EDSS were identified at any of the anatomical locations studied in this cohort of people with RRMS. Conclusion: The results from this study demonstrate the presence of PNS damage in people with RRMS and support the notion that these changes, suggestive of demyelination, maybe occurring independently at different anatomical locations within the PNS. Further investigations to confirm these findings and to clarify the pathophysiological basis of these alterations are warranted
    corecore