105 research outputs found

    Patient-specific instrumentation in total ankle arthroplasty

    Get PDF
    The recent increase in the adoption of total ankle arthroplasty (TAA) reflects the improvements in implant designs and surgical techniques, including the use of preoperative navigation system and patient-specific instrumentation (PSI), such as custom-made cutting guides. Cutting guides are customized with respect to each patient's anatomy based on preoperative ankle computed tomography scans, and they drive the saw intra-operatively to improve the accuracy of bone resection and implant positioning. Despite some promising results, the main queries in the literature are whether PSI improves the reliability of achieving neutral ankle alignment and more accurate implant sizing, whether it is actually superior over standard techniques, and whether it is cost effective. Moreover, the advantages of PSI in clinical outcomes are still theoretical because the current literature does not allow to confirm its superiority. The purpose of this review article is therefore to assess the current literature on PSI in TAA with regard to current implants with PSI, templating and preoperative planning strategies, alignment and sizing, clinical outcomes, cost analysis, and comparison with standard techniques

    TIMP-3 facilitates binding of target metalloproteinases to the endocytic receptor LRP-1 and promotes scavenging of MMP-1

    Get PDF
    Matrix metalloproteinases (MMPs) and the related families of disintegrin metalloproteinases (ADAMs) and ADAMs with thrombospondin repeats (ADAMTSs) play a crucial role in extracellular matrix (ECM) turnover and shedding of cell-surface molecules. The proteolytic activity of metalloproteinases is post-translationally regulated by their endogenous inhibitors, known as tissue inhibitors of metalloproteinases (TIMPs). Several MMPs, ADAMTSs and TIMPs have been reported to be endocytosed by the low-density lipoprotein receptor-related protein-1 (LRP-1). Different binding affinities of these proteins for the endocytic receptor correlate with different turnover rates which, together with differences in their mRNA expression, determines their nett extracellular levels. In this study, we used surface plasmon resonance to evaluate the affinity between LRP-1 and a number of MMPs, ADAMs, ADAMTSs, TIMPs and metalloproteinase/TIMP complexes. This identified MMP-1 as a new LRP-1 ligand. Among the proteins analyzed, TIMP-3 bound to LRP-1 with highest affinity (KD = 1.68 nM). Additionally, we found that TIMP-3 can facilitate the clearance of its target metalloproteinases by bridging their binding to LRP-1. For example, the free form of MMP-1 was found to have a KD of 34.6 nM for LRP-1, while the MMP-1/TIMP-3 complex had a sevenfold higher affinity (KD = 4.96 nM) for the receptor. TIMP-3 similarly bridged binding of MMP-13 and MMP-14 to LRP-1. TIMP-1 and TIMP-2 were also found to increase the affinity of target metalloproteinases for LRP-1, albeit to a lesser extent. This suggests that LRP-1 scavenging of TIMP/metalloproteinase complexes may be a general mechanism by which inhibited metalloproteinases are removed from the extracellular environment

    EEG-based cognitive control behaviour assessment: an ecological study with professional air traffic controllers

    Get PDF
    Several models defining different types of cognitive human behaviour are available. For this work, we have selected the Skill, Rule and Knowledge (SRK) model proposed by Rasmussen in 1983. This model is currently broadly used in safety critical domains, such as the aviation. Nowadays, there are no tools able to assess at which level of cognitive control the operator is dealing with the considered task, that is if he/she is performing the task as an automated routine (skill level), as procedures-based activity (rule level), or as a problem-solving process (knowledge level). Several studies tried to model the SRK behaviours from a Human Factor perspective. Despite such studies, there are no evidences in which such behaviours have been evaluated from a neurophysiological point of view, for example, by considering brain activity variations across the different SRK levels. Therefore, the proposed study aimed to investigate the use of neurophysiological signals to assess the cognitive control behaviours accordingly to the SRK taxonomy. The results of the study, performed on 37 professional Air Traffic Controllers, demonstrated that specific brain features could characterize and discriminate the different SRK levels, therefore enabling an objective assessment of the degree of cognitive control behaviours in realistic setting

    Identification of membrane proteins regulated by ADAM15 by SUSPECS proteomics

    Get PDF
    ADAM15 is a member of the disintegrin-metalloproteinase family of sheddases, which plays a role in several biological processes including cartilage homeostasis. In contrast with well-characterized ADAMs, such as the canonical sheddases ADAM17 and ADAM10, little is known about substrates of ADAM15 or how the enzyme exerts its biological functions. Herein, we used surface-spanning enrichment with click-sugars (SUSPECS) proteomics to identify ADAM15 substrates and/or proteins regulated by the proteinase at the cell surface of chondrocyte-like cells. Silencing of ADAM15 by siRNAs significantly altered membrane levels of 13 proteins, all previously not known to be regulated by ADAM15. We used orthogonal techniques to validate ADAM15 effects on 3 of these proteins which have known roles in cartilage homeostasis. This confirmed that ADAM15-silencing increased cell surface levels of the programmed cell death 1 ligand 2 (PDCD1LG2) and reduced cell surface levels of vasorin and the sulfate transporter SLC26A2 through an unknown post-translational mechanism. The increase of PDCD1LG2 by ADAM15 knockdown, a single-pass type I transmembrane protein, suggested it could be a proteinase substrate. However, shed PDCD1LG2 could not be detected even by a data-independent acquisition mass spectrometry, a highly sensitive method for identification and quantification of proteins in complex protein samples, suggesting that ADAM15 regulates PDCD1LG2 membrane levels by a mechanism different from ectodomain shedding

    Quantitative Proteomics Reveals That ADAM15 Can Have Proteolytic-Independent Functions in the Steady State

    Get PDF
    A disintegrin and metalloproteinase 15 (ADAM15) is a member of the ADAM family of sheddases. Its genetic ablation in mice suggests that ADAM15 plays an important role in a wide variety of biological functions, including cartilage homeostasis. Nevertheless, while the substrate repertoire of other members of the ADAM family, including ADAM10 and ADAM17, is largely established, little is known about the substrates of ADAM15 and how it exerts its biological functions. Herein, we used unbiased proteomics to identify ADAM15 substrates and proteins regulated by the proteinase in chondrocyte-like HTB94 cells. ADAM15 silencing did not induce major changes in the secretome composition of HTB94 cells, as revealed by two different proteomic approaches. Conversely, overexpression of ADAM15 remodeled the secretome, with levels of several secreted proteins being altered compared to GFP-overexpressing controls. However, the analysis did not identify potential substrates of the sheddase, i.e., transmembrane proteins released by ADAM15 in the extracellular milieu. Intriguingly, secretome analysis and immunoblotting demonstrated that ADAM15 overexpression increased secreted levels of tissue inhibitor of metalloproteinases 3 (TIMP-3), a major regulator of extracellular matrix turnover. An inactive form of ADAM15 led to a similar increase in the inhibitor, indicating that ADAM15 regulates TIMP-3 secretion by an unknown mechanism independent of its catalytic activity. In conclusion, high-resolution quantitative proteomics of HTB94 cells manipulated to have increased or decreased ADAM15 expression did not identify canonical substrates of the proteinase in the steady state, but it revealed that ADAM15 can modulate the secretome in a catalytically-independent manner

    Effect of mechanical separation process on lipid oxidation in European aquacultured sea bass, gilthead sea bream, and rainbow trout products

    Get PDF
    Mechanical separation systems are a good option to create new fish products and open new market, however studies on the effect on quality of mechanical treatment on species of interest for European aquaculture, such as European sea bass, gilthead sea bream, and rainbow trout are scarce. Thus in this research, the effect on colour, nutritional quality, and lipid stability was considered immediately after separation process and after 90 days of frozen storage. Results revealed that mechanical separation technique significantly affected colour and lipid stability of the three studied species. Increases in L* and secondary oxidation products were observed, together with a decrease of antioxidant capacity. Nutritional value instead was unaffected by treatment. Thus, mechanical separation process could represent a new way to better exploit species of interest for European aquaculture and acquire new market niches, but oxidative processes during the treatment have to be limited and kept under control

    Quantitative Proteomics Reveals Changes Induced by TIMP-3 on Cell Membrane Composition and Novel Metalloprotease Substrates

    Get PDF
    Ectodomain shedding is a key mechanism of several biological processes, including cell-communication. Disintegrin and metalloproteinases (ADAMs), together with the membrane-type matrix metalloproteinases, play a pivotal role in shedding transmembrane proteins. Aberrant shedding is associated to several pathological conditions, including arthritis. Tissue inhibitor of metalloproteases 3 (TIMP-3), an endogenous inhibitor of ADAMs and matrix metalloproteases (MMPs), has been proven to be beneficial in such diseases. Thus, strategies to increase TIMP-3 bioavailability in the tissue have been sought for development of therapeutics. Nevertheless, high levels of TIMP-3 may lead to mechanism-based side-effects, as its overall effects on cell behavior are still unknown. In this study, we used a high-resolution mass-spectrometry-based workflow to analyze alterations induced by sustained expression of TIMP-3 in the cell surfaceome. In agreement with its multifunctional properties, TIMP-3 induced changes on the protein composition of the cell surface. We found that TIMP-3 had differential effects on metalloproteinase substrates, with several that accumulated in TIMP-3-overexpressing cells. In addition, our study identified potentially novel ADAM substrates, including ADAM15, whose levels at the cell surface are regulated by the inhibitor. In conclusion, our study reveals that high levels of TIMP-3 induce modifications in the cell surfaceome and identifies molecular pathways that can be deregulated via TIMP-3-based therapies

    Abdominal Fat Characteristics and Mortality in Rectal Cancer: A Retrospective Study

    Get PDF
    : The aim of this study was to evaluate the association of adipose tissue characteristics with survival in rectal cancer patients. All consecutive patients, diagnosed with stage II-IV rectal cancer between 2010-2016 using baseline unenhanced Computed Tomography (CT), were included. Baseline total, subcutaneous and visceral adipose tissue areas (TAT, SAT, VAT) and densities (TATd, SATd, VATd) at third lumbar vertebra (L3) were retrospectively measured. The association of these tissues with cancer-specific and progression-free survival (CCS, PFS) was assessed by using competitive risk models adjusted by age, sex and stage. Among the 274 included patients (median age 70 years, 41.2% females), the protective effect of increasing adipose tissue area on survival could be due to random fluctuations (e.g., sub-distribution hazard ratio-SHR for one cm2 increase in SAT = 0.997; 95%confidence interval-CI = 0.994-1.000; p = 0.057, for CSS), while increasing density was associated with poorer survival (e.g., SHR for one Hounsfield Unit-HU increase in SATd = 1.03, 95% CI = 1.01-1.05, p = 0.002, for CSS). In models considering each adipose tissue area and respective density, the association with CSS tended to disappear for areas, while it did not change for TATd and SATd. No association was found with PFS. In conclusion, adipose tissue density influenced survival in rectal cancer patients, raising awareness on a routinely measurable variable that requires more research efforts

    Identification of membrane proteins regulated by ADAM15 by SUSPECS proteomics

    Get PDF
    ADAM15 is a member of the disintegrin-metalloproteinase family of sheddases, which plays a role in several biological processes including cartilage homeostasis. In contrast with well-characterized ADAMs, such as the canonical sheddases ADAM17 and ADAM10, little is known about substrates of ADAM15 or how the enzyme exerts its biological functions. Herein, we used “surface-spanning enrichment with click-sugars (SUSPECS)” proteomics to identify ADAM15 substrates and/or proteins regulated by the proteinase at the cell surface of chondrocyte-like cells. Silencing of ADAM15 by siRNAs significantly altered membrane levels of 13 proteins, all previously not known to be regulated by ADAM15. We used orthogonal techniques to validate ADAM15 effects on 3 of these proteins which have known roles in cartilage homeostasis. This confirmed that ADAM15-silencing increased cell surface levels of the programmed cell death 1 ligand 2 (PDCD1LG2) and reduced cell surface levels of vasorin and the sulfate transporter SLC26A2 through an unknown post-translational mechanism. The increase of PDCD1LG2 by ADAM15 knockdown, a single-pass type I transmembrane protein, suggested it could be a proteinase substrate. However, shed PDCD1LG2 could not be detected even by a data-independent acquisition mass spectrometry, a highly sensitive method for identification and quantification of proteins in complex protein samples, suggesting that ADAM15 regulates PDCD1LG2 membrane levels by a mechanism different from ectodomain shedding
    • …
    corecore