1,225 research outputs found
Measurement of jet fragmentation into charged particles in pp and PbPb collisions at sqrt(s[NN]) = 2.76 TeV
Jet fragmentation in pp and PbPb collisions at a centre-of-mass energy of
2.76 TeV per nucleon pair was studied using data collected with the CMS
detector at the LHC. Fragmentation functions are constructed using
charged-particle tracks with transverse momenta pt > 4 GeV for dijet events
with a leading jet of pt > 100 GeV. The fragmentation functions in PbPb events
are compared to those in pp data as a function of collision centrality, as well
as dijet-pt imbalance. Special emphasis is placed on the most central PbPb
events including dijets with unbalanced momentum, indicative of energy loss of
the hard scattered parent partons. The fragmentation patterns for both the
leading and subleading jets in PbPb collisions agree with those seen in pp data
at 2.76 TeV. The results provide evidence that, despite the large parton energy
loss observed in PbPb collisions, the partition of the remaining momentum
within the jet cone into high-pt particles is not strongly modified in
comparison to that observed for jets in vacuum.Comment: Submitted to the Journal of High Energy Physic
Search for the standard model Higgs boson decaying to W^+W^− in the fully leptonic final state in pp collisions at √s = 7 TeV
A search for the standard model Higgs boson decaying to W^+W^− in pp collisions at √s=7 TeV is reported. The data are collected at the LHC with the CMS detector, and correspond to an integrated luminosity of 4.6 fb^(−1). The W^+W^− candidates are selected in events with two charged leptons and large missing transverse energy. No significant excess of events above the standard model background expectations is observed, and upper limits on the Higgs boson production relative to the standard model Higgs expectation are derived. The standard model Higgs boson is excluded in the mass range 129–270 GeV at 95% confidence level
Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy
A search for new physics is performed in events with two same-sign isolated
leptons, hadronic jets, and missing transverse energy in the final state. The
analysis is based on a data sample corresponding to an integrated luminosity of
4.98 inverse femtobarns produced in pp collisions at a center-of-mass energy of
7 TeV collected by the CMS experiment at the LHC. This constitutes a factor of
140 increase in integrated luminosity over previously published results. The
observed yields agree with the standard model predictions and thus no evidence
for new physics is found. The observations are used to set upper limits on
possible new physics contributions and to constrain supersymmetric models. To
facilitate the interpretation of the data in a broader range of new physics
scenarios, information on the event selection, detector response, and
efficiencies is provided.Comment: Published in Physical Review Letter
Search for the standard model Higgs boson decaying into two photons in pp collisions at √s = 7 TeV
A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a center-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 fb^(−1). Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1σ. The global significance of observing an excess with a local significance ⩾3.1σ anywhere in the search range 110–150 GeV is estimated to be 1.8σ. More data are required to ascertain the origin of this excess
Recommended from our members
Measurement of differential cross sections for the production of a pair of isolated photons in pp collisions at [Formula: see text].
A measurement of differential cross sections for the production of a pair of isolated photons in proton-proton collisions at [Formula: see text] is presented. The data sample corresponds to an integrated luminosity of 5.0[Formula: see text] collected with the CMS detector. A data-driven isolation template method is used to extract the prompt diphoton yield. The measured cross section for two isolated photons, with transverse energy above 40 and 25[Formula: see text] respectively, in the pseudorapidity range [Formula: see text], [Formula: see text] and with an angular separation [Formula: see text], is [Formula: see text][Formula: see text]. Differential cross sections are measured as a function of the diphoton invariant mass, the diphoton transverse momentum, the azimuthal angle difference between the two photons, and the cosine of the polar angle in the Collins-Soper reference frame of the diphoton system. The results are compared to theoretical predictions at leading, next-to-leading, and next-to-next-to-leading order in quantum chromodynamics
Search for neutral Higgs bosons decaying to tau pairs in pp collisions at √s = 7 TeV
A search for neutral Higgs bosons decaying to tau pairs at a center-of-mass energy of 7 TeV is performed using a dataset corresponding to an integrated luminosity of 4.6 fb^(−1) recorded by the CMS experiment at the LHC. The search is sensitive to both the standard model Higgs boson and to the neutral Higgs bosons predicted by the minimal supersymmetric extension of the standard model (MSSM). No excess of events is observed in the tau-pair invariant-mass spectrum. For a standard model Higgs boson in the mass range of 110–145 GeV upper limits at 95% confidence level (CL) on the production cross section are determined. We exclude a Higgs boson with m_H=115 GeV with a production cross section 3.2 times of that predicted by the standard model. In the MSSM, upper limits on the neutral Higgs boson production cross section times branching fraction to tau pairs, as a function of the pseudoscalar Higgs boson mass, m_A, sets stringent new bounds in the parameter space, excluding at 95% CL values of tan β as low as 7.1 at m_A=160 GeV in the m^(max)_h benchmark scenario
- …