2,601 research outputs found
Development of the space shuttle body flap actuation subsystem
Development of the Body Flap Actuation Subsystem for Space Shuttles included alterations from the original design to mechanical stops, planet gears, control valves, and solenoid valves. The mechanical stops were redesigned to absorb stall load and rotating inertia of the hydraulic motors instead of only stall load. The institution of a quill shaft (torsion spring) was a successful solution. The planet gears in the geared rotary actuators developed cracks during testing. This failure was alleviated via modification to the gears. A motor pressurization - brake release timing technique was developed thru analysis and testing. This resulted in a control valve configuration which would not permit freewheeling of the body flap surface. Finally, several solenoid valve configurations were tested to obtain the desired performance. Conceptual redesigns and modifications were weighted against each other to optimize a solution. Tradeoffs were usually made between life, performance, failure tolerance, and reliability versus weight, envelope, and maintainability
Examining the effects of Referent Power on Intrinsic Motivation in organisations: a self-concept based approach
Using a self-concept based approach we examine the literature for evidence of effects, induced by referent power, on the intrinsic motivation of employees. We propose that the subject of a referent power relationship will be intrinsically motivated to affirm, or enhance their self-concept, in relation to characteristics of a referent agent. Hypotheses were developed and tested using data from 311 employees of a large consulting firm. We found empirical support for the view that referent motivation leads to behaviour in individuals that is in accord with characteristics of a referent agent, with this behaviour resulting in affirmation or enhancement of their self-concept
A Note on Frame Dragging
The measurement of spin effects in general relativity has recently taken
centre stage with the successfully launched Gravity Probe B experiment coming
toward an end, coupled with recently reported measurements using laser ranging.
Many accounts of these experiments have been in terms of frame-dragging. We
point out that this terminology has given rise to much confusion and that a
better description is in terms of spin-orbit and spin-spin effects. In
particular, we point out that the de Sitter precession (which has been mesured
to a high accuracy) is also a frame-dragging effect and provides an accurate
benchmark measurement of spin-orbit effects which GPB needs to emulate
Spectral Analysis of GRBs Measured by RHESSI
The Ge spectrometer of the RHESSI satellite is sensitive to Gamma Ray Bursts
(GRBs) from about 40 keV up to 17 MeV, thus ideally complementing the Swift/BAT
instrument whose sensitivity decreases above 150 keV. We present preliminary
results of spectral fits of RHESSI GRB data. After describing our method, the
RHESSI results are discussed and compared with Swift and Konus.Comment: 4 pages, 4 figures, conference proceedings, 'Swift and GRBs:
Unveiling the Relativistic Universe', San Servolo, Venice, 5-9 June 2006, to
appear in Il Nouvo Ciment
The Giant Flare of December 27, 2004 from SGR 1806-20
The giant flare of December 27, 2004 from SGR 1806-20 represents one of the
most extraordinary events captured in over three decades of monitoring the
gamma-ray sky. One measure of the intensity of the main peak is its effect on
X- and gamma-ray instruments. RHESSI, an instrument designed to study the
brightest solar flares, was completely saturated for ~0.5 s following the start
of the main peak. A fortuitous alignment of SGR 1806-20 near the Sun at the
time of the giant flare, however, allowed RHESSI a unique view of the giant
flare event, including the precursor, the main peak decay, and the pulsed tail.
Since RHESSI was saturated during the main peak, we augment these observations
with Wind and RHESSI particle detector data in order to reconstruct the main
peak as well. Here we present detailed spectral analysis and evolution of the
giant flare. We report the novel detection of a relatively soft fast peak just
milliseconds before the main peak, whose timescale and sizescale indicate a
magnetospheric origin. We present the novel detection of emission extending up
to 17 MeV immediately following the main peak, perhaps revealing a
highly-extended corona driven by the hyper-Eddington luminosities. The spectral
evolution and pulse evolution during the tail are presented, demonstrating
significant magnetospheric twist and evolution during this phase. Blackbody
radii are derived for every stage of the flare, which show remarkable agreement
despite the range of luminosities and temperatures covered. Finally, we place
significant upper limits on afterglow emission in the hundreds of seconds
following the giant flare.Comment: 32 pages, 14 figures, submitted to Ap
RHESSI Spectral Fits of Swift GRBs
One of the challenges of the Swift era has been accurately determining Epeak
for the prompt GRB emission. RHESSI, which is sensitive from 30 keV to 17 MeV,
can extend spectral coverage above the Swift-BAT bandpass. Using the public
Swift data, we present results of joint spectral fits for 26 bursts co-observed
by RHESSI and Swift-BAT through May 2007. We compare these fits to estimates of
Epeak which rely on BAT data alone. A Bayesian Epeak estimator gives better
correspondence with our measured results than an estimator relying on
correlations with the Swift power law indices.Comment: 4 pages, 1 figure. To appear in the proceedings of Gamma Ray Bursts
2007, Santa Fe, New Mexico, November 5-9 200
- …