27 research outputs found

    Detection of Dural Metastases Before the Onset of Clinical Symptoms by 16 alpha-[F-18]Fluoro-17 beta-Estradiol PET in a Patient With Estrogen Receptor-Positive Breast Cancer

    Get PDF
    We offer an illustrative case about estrogen receptor (ER) imaging (also known as 16 alpha-[F-18]fluoro-17 beta-estradiol ([F-18]-FES) PET) and the detection of metastatic lesions in the dural region. We present a case of a woman with ER-positive metastatic breast cancer and high [F-18]-FES uptake in the dural region on PET imaging, without associated clinical symptoms. These lesions were missed on [F-18]-FDG PET because of physiological [F-18]-FDG uptake in the brain. This case highlighted some difficulties in the interpretation of imaging of brain metastases and demonstrated the added value of [F-18]-FES PET imaging. [F-18]-FES PET could be used to prove the presence of ER-positive metastases in the brain

    Application of PET Tracers in Molecular Imaging for Breast Cancer

    Get PDF
    Purpose of Review: Molecular imaging with positron emission tomography (PET) is a powerful tool to visualize breast cancer characteristics. Nonetheless, implementation of PET imaging into cancer care is challenging, and essential steps have been outlined in the international “imaging biomarker roadmap.” In this review, we identify hurdles and provide recommendations for implementation of PET biomarkers in breast cancer care, focusing on the PET tracers 2-[18F]-fluoro-2-deoxyglucose ([18F]-FDG), sodium [18F]-fluoride ([18F]-NaF), 16α-[18F]-fluoroestradiol ([18F]-FES), and [89Zr]-trastuzumab. Recent Findings: Technical validity of [18F]-FDG, [18F]-NaF, and [18F]-FES is established and supported by international guidelines. However, support for clinical validity and utility is still pending for these PET tracers in breast cancer, due to variable endpoints and procedures in clinical studies. Summary: Assessment of clinical validity and utility is essential towards implementation; however, these steps are still lacking for PET biomarkers in breast cancer. This could be solved by adding PET biomarkers to randomized trials, development of imaging data warehouses, and harmonization of endpoints and procedures

    Image Quality and Interpretation of [18F]-FES-PET:Is There any Effect of Food Intake?

    Get PDF
    BACKGROUND: High physiological 16α-[18F]-fluoro-17ÎČ-estradiol ([18F]-FES) uptake in the abdomen is a limitation of this positron emission tomography (PET) tracer. Therefore, we investigated the effect of food intake prior to PET acquisition on abdominal background activity in [18F]-FES-PET scans. METHODS: Breast cancer patients referred for [18F]-FES-PET were included. Three groups were designed: (1) patients who consumed a chocolate bar (fatty meal) between tracer injection and imaging (n = 20), (2) patients who fasted before imaging (n = 20), and (3) patients without diet restrictions (control group, n = 20). We compared the physiological [18F]-FES uptake, expressed as mean standardized uptake value (SUVmean), in the abdomen between groups. RESULTS: A significant difference in [18F]-FES uptake in the gall bladder and stomach lumen was observed between groups, with the lowest values for the chocolate group and highest for the fasting group (p = 0.015 and p = 0.011, respectively). Post hoc analysis showed significant differences in the SUVmean of these organs between the chocolate and fasting groups, but not between the chocolate and control groups. CONCLUSION: This exploratory study showed that, compared to fasting, eating chocolate decreases physiological gall bladder and stomach [18F]-FES uptake; further reduction through a normal diet was not seen. A prospective study is warranted to confirm this finding

    Value of 18F-FES-PET to solve clinical dilemmas in breast cancer patients:a retrospective study

    Get PDF
    Background: Breast cancer (BC) is a heterogeneous disease, in which estrogen receptor (ER) expression plays an important role in the majority of breast tumors. A clinical dilemma may arise when a metastasis biopsy to determine the ER status cannot be performed safely or when ER heterogeneity is suspected between tumor lesions. Whole-body ER imaging, such as 16α-18F-fluoro-17ÎČ-estradiol (18F-FES) positron emission tomography (PET), may have added value in these situations. However, the role of this imaging technique in routine clinical practice remains to be further determined. Therefore, we assessed the value of 18F-FES-PET by evaluating if the physician's clinical dilemma that remained after standard workup was solved by the 18F-FES-PET scan. Methods: In this retrospective study, 18F-FES-PET scans, performed in patients with (suspected) ER+ metastatic BC with remaining clinical dilemma after standard workup, at the University Medical Center of Groningen between November 2009 and January 2019, were included. We investigated whether the physician's clinical dilemma was solved, defined as 1) 18F-FES-PET provided a solution for the clinical dilemma, and/or 2) a treatment decision was based directly on the 18F-FES-PET. In addition, category of clinical dilemma, and rate of 18F-FES positive or negative PET scans were reported, and related to frequency of solved dilemmas. Results: One hundred 18F-FES-PET scans were performed in 83 patients. Clinical dilemma categories were: 1) inability to determine extent of (suspected) metastatic disease with standard workup (n = 52), 2) unclear ER status of the tumor (n = 31), and 3) inability to determine which primary tumor caused metastases (n = 17). Dilemmas were solved by 18F-FES-PET in 87/100 cases (87%). In 81/87 cases a treatment decision was made based directly on the 18F-FES-PET (treatment change: n = 51 cases; continuance: n = 30 cases). The frequency of solved dilemmas was not related to the clinical dilemma category (P = 0.334). However, the frequency of solved dilemmas was related to whether scans were 18F-FES positive (n = 63) or negative (n = 37; p<0.001). Conclusion: For various indications, the 18F-FES-PET scan can help to solve the vast majority of clinical dilemmas that may remain after standard workup. Therefore, the 18F-FES-PET scan has added value in BC patients presenting with a clinical dilemma

    Serial [F-18]-FDHT-PET to predict bicalutamide efficacy in patients with androgen receptor positive metastatic breast cancer

    Get PDF
    Background: The androgen receptor (AR) is a potential target in metastatic breast cancer (MBC), and 16 beta-[F-18]-fluoro-5 alpha-dihydrotestosterone positron emission tomography ([F-18]-FDHT-PET) can be used for noninvasive visualisation of AR. [F-18]-FDHT uptake reduction during AR-targeting therapy reflects AR occupancy and might be predictive for treatment response. We assessed the feasibility of [F-18]-FDHT-PET to detect changes in AR availability during bicalutamide treatment and correlated these changes with treatment response. Patients and methods: Patients with AR thorn MBC, regardless of oestrogen receptor status, received an [F-18]-FDHT-PET at baseline and after 4-6 weeks bicalutamide treatment. Baseline [F-18]-FDHT uptake was expressed as maximum standardised uptake value. Percentage change in tracer uptake, corrected for background activity (SUVcor), between baseline and follow-up PET scan (% reduction), was assessed per-patient and lesion. Clinical benefit was determined in accordance with Response Evaluation Criteria in Solid Tumours (RECIST) 1.1 or clinical evaluation (absence of disease progression for >= 24 weeks). Results: Baseline [F-18]-FDHT-PET in 21 patients detected 341 of 515 lesions found with standard imaging and 21 new lesions. Follow-up [F-18]-FDHT- PET was evaluable in 17 patients with 349 lesions, showing a decrease in median SUVcor from 1.3 to 0.7 per-patient and lesion (P <0.001). Median % reduction per-patient was - 45% and per-lesion -39%. In patients with progressive disease (n Z 11), median % reduction was -30% versus -53% for patients who showed clinical benefit (in accordance with RECIST (n = 3) or clinical evaluation (n = 3); P Z 0.338). Conclusion: In this feasibility study, a bicalutamide-induced reduction in [F-18]-FDHT uptake could be detected by follow-up [F-18]-FDHT-PET in patients with AR thorn MBC. However, this change could not predict bicalutamide response. (C) 2020 The Authors. Published by Elsevier Ltd

    Molecular imaging to identify patients with metastatic breast cancer who benefit from endocrine treatment combined with cyclin-dependent kinase inhibition

    Get PDF
    BACKGROUND: Adding cyclin-dependent kinase (CDK) inhibitor to endocrine treatment improves outcome in Ɠstrogen receptor (ER) positive metastatic breast cancer, but identifying the subset of patients who benefit is challenging. Response is potentially associated with ER expression heterogeneity. This is because, unlike the primary tumour in the breast that is localized to the organ, the metastatic breast cancer has spread and continues to spread to distant locations in the body such as bones, lungs, liver, axial skeleton, even to the central nervous system like the brain, wherefrom obtaining biopsies are not easy, and also, the metastasised tissues are heterogeneous. Positron emission tomography (PET) with 16α-[18F]fluoro-17ÎČ-Ɠstradiol (FES), briefly referred to as FES-PET, allows whole-body ER assessment. We explored whether FES-PET heterogeneity and FES uptake were related to letrozole and palbociclib outcome, in patients with ER positive, metastatic breast cancer. PATIENTS AND METHODS: Patients underwent a baseline FES-PET and 18F-fluorodeoxyglucose (FDG) PET, the FDG-PET served to help identify active sites of breast cancer with contrast-enhanced computed tomography (CT). FES-PET heterogeneity score (% FES positive lesions divided by all lesions on FDG-PET and/or CT) and FES uptake were related to outcome and 8-week FDG-PET response. Circulating tumour DNA (CtDNA) samples for ESR1 mutation analysis were collected at baseline. RESULTS: In 30 patients with 864 metastatic lesions, baseline FES-PET heterogeneity was assessed. In 27 patients with 688 lesions, response was evaluated. Median time to progression (TTP) was 73 weeks (95% confidence interval [CI] 21 to ∞) in 7 patients with 100% FES positive disease, 27 weeks (14-49) in heterogeneous FES positive disease (20 patients), and 15 weeks (9 to ∞) without FES positivity (three patients; log-rank P = 0.30). Geometric mean FES uptake was 2.3 for metabolic progressive patients, 2.5 (Pvs progression = 0.82) for metabolic stable disease, and 3.3 (Pvs progression = 0.40) for metabolic response (Ptrend = 0.21). ESR1 mutations, found in 13/23 patients, were unrelated to FES uptake. CONCLUSION: This exploratory study suggests that FES-PET heterogeneity may potentially identify the subset of ER positive, metastatic breast cancer patients who benefit from letrozole combined with CDK inhibition. CLINICAL TRIAL INFORMATION: NCT02806050

    Analyzing the Estrogen Receptor Status of Liver Metastases with [F-18]-FES-PET in Patients with Breast Cancer

    Get PDF
    Background: Positron emission tomography (PET) with 16α-[18F]-fluoro-17ÎČ-estradiol ([18F]-FES) can visualize estrogen receptor (ER) expression, but it is challenging to determine the ER status of liver metastases, due to high physiological [18F]-FES uptake. We evaluated whether [18F]-FES-PET can be used to determine the ER status of liver metastases, using corresponding liver biopsies as the gold standard. Methods: Patients with metastatic breast cancer (n = 23) were included if they had undergone a [18F]-FES-PET, liver metastasis biopsy, CT-scan, and [18F]-FDG-PET. [18F]-FES-PET scans were assessed by visual and quantitative analysis, tracer uptake was correlated with ER expression measured by immunohistochemical staining and the effects of region-of-interest size and background correction were determined. Results: Visual analysis allowed ER assessment of liver metastases with 100% specificity and 18% sensitivity. Quantitative analysis improved the sensitivity. Reduction of the region-of-interest size did not further improve the results, but background correction improved ER assessment, resulting in 83% specificity and 77% sensitivity. Using separate thresholds for ER+ and ER− metastases, positive and negative predictive values of 100% and 75%, respectively, could be obtained, although 30% of metastases remained inconclusive. Conclusion: In the majority of liver metastases, ER status can be determined with [18F]-FES-PET if background correction and separate thresholds are applied

    Whole-body PET imaging in metastatic breast cancer with a focus on hormone receptors

    Get PDF
    Whole-body PET imaging in metastatic breast cancer with a focus on hormone receptors Breast cancer is the most common type of cancer diagnosed in women. Some of these women will develop distant metastases. The clinical course of the disease depends on the expression of hormone receptors. Whole-body PET imaging can be of added value. The estrogen receptor is expressed by the large majority of breast cancers, and can be visualized by means of [18F]-FES-PET. This scan can help to solve clinical dilemmas that may remain after standard workup, such as determining the extent of metastatic disease, unclear estrogen receptor status of the tumor, and inability to determine which primary tumor caused the metastases. In addition, we conclude that fasting, which is less patient-friendly, is not necessary to improve the quality of the [18F]-FES-PET scan. We have also constructed a flowchart for assessment of the estrogen receptor status of liver metastases with [18F]-FES-PET/CT. The [18F]-FES-PET scan can also be combined with [18F]-FDG-PET to determine estrogen receptor heterogeneity. The tumor estrogen receptor heterogeneity percentage may potentially identify the patients who benefit from the treatment with aromatase inhibitor letrozole and the CDK 4/6 inhibitor palbociclib. [18F]-FDG-PET is also a useful tool to detect metastases, including invasive lobular carcinomas. Like the estrogen receptor, the androgen receptor is another potential endocrine target in breast cancer. This receptor could be visualized by [18F]-FDHT-PET and changes in [18F]-FDHT uptake during androgen receptor antagonist bicalutamide treatment can be detected
    corecore