56 research outputs found
Mineral Trioxide Aggregate Material Use in Endodontic Treatment: A Review of the Literature
Objective
The purpose of this paper was to review the composition, properties, biocompatibility, and the clinical results involving the use of mineral trioxide aggregate (MTA) materials in endodontic treatment. Methods
Electronic search of scientific papers from January 1990 to August 2006 was accomplished using PubMed and Scopus search engines (search terms: MTA, GMTA, WMTA, mineral AND trioxide AND aggregate). Results
Selected exclusion criteria resulted in 156 citations from the scientific, peer-reviewed dental literature. MTA materials are derived from a Portland cement parent compound and have been demonstrated to be biocompatible endodontic repair materials, with its biocompatible nature strongly suggested by its ability to form hydroxyappatite when exposed to physiologic solutions. With some exceptions, MTA materials provide better microleakage protection than traditional endodontic repair materials using dye, fluid filtration, and bacterial penetration leakage models. In both animal and human studies, MTA materials have been shown to have excellent potential as pulp-capping and pulpotomy medicaments but studies with long-term follow-up are limited. Preliminary studies suggested a favorable MTA material use as apical and furcation restorative materials as well as medicaments for apexogenesis and apexification treatments; however, long-term clinical studies are needed in these areas. Conclusion
MTA materials have been shown to have a biocompatible nature and have excellent potential in endodontic use. MTA materials are a refined Portland cement material and the substitution of Portland cement for MTA products is presently discouraged. Existing human studies involving MTA materials are very promising, however, insufficient randomized, double-blind clinical studies of sufficient duration exist involving MTA for all of its clinical indications. Further clinical studies are needed in these areas
Bond Strength of an Amorphous Calcium Phosphate–Containing Orthodontic Adhesive
Objective: To determine whether an amorphous calcium phosphate (ACP)-containing adhesive has an acceptable level of shear bond strength to be used as an orthodontic adhesive.
Materials and Methods: Sixty extracted premolars were randomly divided into three groups for orthodontic bonding. Group 1 used a composite resin adhesive (Transbond XT), group 2 was bonded with an ACP-containing adhesive (Aegis Ortho), and group 3 used a resin-modified glass ionomer (Fuji Ortho LC). All bonded teeth were stored in distilled water at 37°C for 40 ± 2 hours prior to debonding. Shear bond strength and adhesive remnant index (ARI) were recorded for each specimen.
Results: The mean shear bond strengths for the three test groups were: group 1 (15.2 ± 3.6 MPa), group 2 (6.6 ± 1.5 MPa), and group 3 (8.3 ± 2.8 MPa). A one-way analysis of variance showed a significant difference in bond strengths between the groups. A post hoc Tukey test showed group 1 to be significantly (P \u3c .001) greater than groups 2 and 3. A Kruskal-Wallis test and a Mann-Whitney U-test showed groups 1 and 3 exhibited lower ARI scores than group 2, but a majority of specimens in each group had greater than 50% of the cement removed along with the bracket during debonding.
Conclusions: The ACP-containing adhesive demonstrated a low, but satisfactory bond strength needed to function as an orthodontic adhesive
Thermal Analysis of As-received and Clinically Retrieved Copper-Nickel-Titanium Orthodontic Archwires
Objective: To compare as-received copper-nickel-titanium (CuNiTi) archwires to those used in patients by means of differential scanning calorimetry (DSC). Also, the thermal or phase properties of 27°C, 35°C, and 40°C CuNiTi archwires were studied to ascertain if their properties match those indicated by the manufacturer.
Materials and Methods: Six wires of 27°C, 35°C, and 40°C CuNiTi were tested as-received, and six each of the 27°C and 35°C wires were examined after use in patients for an average of approximately 9 and 7 weeks, respectively. Segments of archwire were investigated by DSC over the temperature range from −100°C to 150°C at 10°C per minute.
Results: There were no significant differences between as-received and clinically used 27°C and 35°C wires for all parameters (heating onset, endset, and enthalpy and cooling onset, endset, and enthalpy), except the 27°C wires exhibited a significant decrease in the heating enthalpy associated with the martensite-to-austenite transition after clinical use. The heating endsets (austenite finish temperatures) of the 27°C and 35°C wires were within 2°C of those claimed by the manufacturer, but the 40°C wires were found to be nearer to 36°C than 40°C.
Conclusions: Clinical use of CuNiTi wires resulted in few differences when compared with as-received wires analyzed by DSC. Two temperature varieties of CuNiTi are reasonably within the parameters of those identified by the manufacturer
Effect of Additives on Mineral Trioxide Aggregate Setting Reaction Product Formation
Introduction Mineral trioxide aggregate (MTA) sets via hydration of calcium silicates to yield calcium silicate hydrates and calcium hydroxide (Ca[OH]2). However, a drawback of MTA is its long setting time. Therefore, many additives have been suggested to reduce the setting time. The effect those additives have on setting reaction product formation has been ignored. The objective was to examine the effect additives have on MTA\u27s setting time and setting reaction using differential scanning calorimetry (DSC). Methods MTA powder was prepared with distilled water (control), phosphate buffered saline, 5% calcium chloride (CaCl2), 3% sodium hypochlorite (NaOCl), or lidocaine in a 3:1 mixture and placed in crucibles for DSC evaluation. The setting exothermic reactions were evaluated at 37°C for 8 hours to determine the setting time. Separate samples were stored and evaluated using dynamic DSC scans (37°C→640°C at10°C/min) at 1 day, 1 week, 1 month, and 3 months (n = 9/group/time). Dynamic DSC quantifies the reaction product formed from the amount of heat required to decompose it. Thermographic peaks were integrated to determine enthalpy, which was analyzed with analysis of variance/Tukey test (α = 0.05). Results Isothermal DSC identified 2 main exothermal peaks occurring at 44 ± 12 and 343 ± 57 minutes for the control. Only the CaCl2 additive was an accelerant, which was observed by a greater exothermic peak at 101 ± 11 minutes, indicating a decreased setting time. The dynamic DSC scans produced an endothermic peak around 450°C–550°C attributed to Ca(OH)2 decomposition. The use of a few additives (NaOCl and lidocaine) resulted in significantly less Ca(OH)2 product formation. Conclusions DSC was used to discriminate calcium hydroxide formation in MTA mixed with various additives and showed NaOCl and lidocaine are detrimental to MTA reaction product formation, whereas CaCl2 accelerated the reaction
Analysis of Flexural Strength and Contact Pressure After Simulated Chairside Adjustment of Pressed Lithium Disilicate Glass-Ceramic
Statement of problem Research evaluating load-to-failure of pressed lithium disilicate glass-ceramic (LDGC) with a clinically validated test after adjustment and repair procedures is scarce. Purpose The purpose of this in vitro study was to investigate the effect of the simulated chairside adjustment of the intaglio surface of monolithic pressed LDGC and procedures intended to repair damage. Material and methods A total of 423 IPS e.max Press (Ivoclar Vivadent AG) disks (15 mm diameter, 1 mm height) were used in the study. The material was tested by using an equibiaxial loading arrangement (n≥30/group) and a contact pressure test (n≥20/group). Specimens were assigned to 1 of 14 groups. One-half was assigned to the equibiaxial load test and the other half underwent contact pressure testing. Testing was performed in 2 parts, before glazing and after glazing. Before-glazing specimens were devested and entered in the test protocol, while after-glazing specimens were devested and glazed before entering the test protocol. Equibiaxial flexure test specimens were placed on a ring-on-ring apparatus and loaded until failure. Contact pressure specimens were cemented to epoxy resin blocks with a resin cement and loaded with a 50-mm diameter hemisphere until failure. Tests were performed on a universal testing machine with a crosshead speed of 0.5 mm/min. Weibull statistics and likelihood ratio contour plots determined intergroup differences (95% confidence bounds). Results Before glazing, the equibiaxial flexural strength test and the Weibull and likelihood ratio contour plots demonstrated a significantly higher failure strength for 1EC (188 MPa) than that of the damaged and/or repaired groups. Glazing following diamond-adjustment (1EGG) was the most beneficial post-damage procedure (176 MPa). Regarding the contact pressure test, the Weibull and likelihood ratio contour plots revealed no significant difference between the 1PC (98 MPa) and 1PGG (98 MPa) groups. Diamond-adjustment, without glazing (1EG and 1PG), resulted in the next-to-lowest equibiaxial flexure strength and the lowest contact pressure. After glazing, the strength of all the groups, when subjected to glazing following devesting, increased in comparison with corresponding groups in the before-glazing part of the study. Conclusions A glazing treatment improved the mechanical properties of diamond-adjusted IPS e.max Press disks when evaluated by equibiaxial flexure and contact pressure tests. Clinical Implications When adjustments are made on the intaglio surface of a pressed lithium disilicate glass-ceramic, a subsequent glazing treatment is recommended to improve strength
Investigation of Force Decay in Aesthetic, Fibre-Reinforced Composite Orthodontic Archwires
Background/Objectives: Because polymer-based materials typically exhibit viscoelastic properties, the objective was to determine if commercially available, aesthetic, fibre-reinforced composite archwires maintain continuous forces without undergoing force decay when deflected continuously.
Materials/Methods: Quasi force decay was evaluated by comparing three-point bending profiles of nickel–titanium (NiTi) and fibre-reinforced composite archwires (BioMers) prior to and after 30 days of continuous deflection of either 1 or 2mm. Paired t-tests or non-parametric signed rank tests were used to statistically compare pre- and post-deflection bending forces. A control group consisting of wires not subject to the 30-day constant deflection was tested to check whether the initial testing altered the second three-point bend test.
Results: Significant (P \u3c 0.01) differences in the pre- and post-deflection deactivation force delivery were most evident in the composite 2mm deflection group and all of the NiTi groups. The composite 2mm deflection group failed to deliver consistent forces as the majority of the wires experienced crazing during the 30-day deflection period. The decrease in force delivery in the NiTi groups may be attributed to the small standard deviations.
Conclusions: The composite 1mm deflection group demonstrated that fibre-reinforced composite archwires are able to deliver a consistent force after 30 days of deflection. However, the clinical applicability of these fibre-reinforced composite archwires may be limited as they are unable to sustain deflections of 2mm without experiencing crazing and loss of force delivery.
Limitations: Clinical efficacy of the aesthetic, fibre-reinforced composite orthodontic archwires remains to be observed
The Effect of Water Storage on the Bending Properties of Esthetic, Fiber-Reinforced Composite Orthodontic Archwires
Objective: To study the effect of water storage on the bending properties of fiber-reinforced composite archwires and compare it to nickel-titanium (NiTi), stainless steel (SS), and beta-titanium archwires.
Materials and Methods: Align A, B, and C and TorQ A and B composite wires from BioMers Products, 0.014-, 0.016, and 0.018-inch, and 0.019 × 0.025-inch NiTi, 0.016-inch SS, and 0.019 × 0.025-inch beta-titanium archwires were tested (n  =  10/type/size/condition). A 20-mm segment was cut from each end of the archwire; one end was then stored in water at 37°C for 30 days, while the other was stored dry. The segments were tested using three-point bending to a maximum deflection of 3.1 mm with force monitored during loading (activation) and unloading (deactivation). Statistical analysis was completed via two-way analysis of variance with wire and condition (dry and water-stored) as factors.
Results: In terms of stiffness and force delivery during activation, in general: beta-titanium was \u3e TorQ B \u3e TorQ A \u3e 0.019 × 0.025-inch NiTi and 0.016-inch SS \u3e Align C \u3e 0.018-inch NiTi \u3e Align B \u3e 0.016-inch NiTi \u3e Align A \u3e 0.014-inch NiTi. Water exposure was detrimental to the larger translucent wires (Align B and C, TorQ A and B) because they were more likely to craze during bending, resulting in decreased forces applied at a given deflection. Align A and the alloy wires were not significantly (P\u3e .05) affected by water storage. Overall, the alloy wires possessed more consistent force values compared to the composite wires
Edge Chipping Resistance and Flexural Strength of Polymer Infiltrated Ceramic Network and Resin Nanoceramic Restorative Materials
Statement of problem Two novel restorative materials, a polymer infiltrated ceramic network (PICN) and a resin nanoceramic (RNC), for computer-assisted design and computer-assisted manufacturing (CAD-CAM) applications have recently become commercially available. Little independent evidence regarding their mechanical properties exists to facilitate material selection. Purpose The purpose of this in vitro study was to measure the edge chipping resistance and flexural strength of the PICN and RNC materials and compare them with 2 commonly used feldspathic ceramic (FC) and leucite reinforced glass-ceramic (LRGC) CAD-CAM materials that share the same clinical indications. Material and methods PICN, RNC, FC, and LRGC material specimens were obtained by sectioning commercially available CAD-CAM blocks. Edge chipping test specimens (n=20/material) were adhesively attached to a resin substrate before testing. Edge chips were produced using a 120-degree, sharp, conical diamond indenter mounted on a universal testing machine and positioned 0.1 to 0.7 mm horizontally from the specimen’s edge. The chipping force was plotted against distance to the edge, and the data were fitted to linear and quadratic equations. One-way ANOVA determined intergroup differences (α=.05) in edge chipping toughness. Beam specimens (n=22/material) were tested for determining flexural strength using a 3-point bend test. Weibull statistics determined intergroup differences (α=.05). Flexural modulus and work of fracture were also calculated, and 1-way ANOVA determined intergroup differences (α=.05) Results Significant (PLRGC=FC\u3ePICN; flexural strength: RNC=LRGC\u3ePICN\u3eFC; flexural modulus: RNCLRGC=PICN\u3eFC. Conclusions The RNC material demonstrated superior performance for the mechanical properties tested compared with the other 3 materials
Bond Strength of Direct and Indirect Bonded Brackets After Thermocycling
Thermocycling simulates the temperature dynamics in the oral environment. With direct bonding, thermocycling reduces the bond strength of orthodontic adhesives to tooth structure. The purpose of this study was to evaluate the shear bond strengths (SBS) of one direct and two indirect bonding methods/adhesives after thermocycling. Sixty human premolars were divided into three groups. Teeth in group 1 were bonded directly with Transbond XT. Teeth in group 2 were indirect bonded with Transbond XT/Sondhi Rapid Set, which is chemically cured. Teeth in group 3 were indirect bonded with Enlight LV/Orthosolo and light cured. Each sample was thermocycled between 5°C and 55°C for 500 cycles. Mean SBS in groups 1, 2, and 3 were not statistically significantly different (13.6 ± 2.9, 12.3 ± 3.0, and 11.6 ± 3.2 MPa, respectively; P \u3e .05). However, when these values were compared with the results of a previous study using the same protocol, but without thermocycling, the SBS was reduced significantly (P = .001). Weibull analysis further showed that group 3 had the lowest bonding survival rate at the minimum clinically acceptable bond-strength range. The Adhesive Remnant Index was also determined, and group 2 had a significantly (P \u3c .05) higher percentage of bond failures at the resin/enamel interface
Shear Bond Strength Comparison between Two Orthodontic Adhesives and Self-Ligating and Conventional Brackets
Objective: To evaluate and compare the shear bond strengths of two adhesives using two types of brackets: a conventional and a self-ligating bracket system.
Materials and Methods: Sixty extracted human premolars were collected. The premolars were randomly divided into three groups of 20 teeth. All three groups were direct bonded. Groups 1 and 2 used light-cured adhesive and primer (Transbond XT) with a conventional (Orthos) and a self-ligating bracket (Damon 2), respectively. Group 3 used a light-cured primer (Orthosolo) and a light-cured adhesive (Blūgloo) with a self-ligating bracket (Damon 2). The specimens were stored in distilled water at 37°C for 40 ± 2 hours, after which they were debonded and inspected for Adhesive Remnant Index (ARI) scoring.
Results: The mean shear bond strength was 15.2 MPa for group 1, 23.2 MPa for group 2, and 24.8 MPa for group 3. A one-way analysis of variance and post hoc Tukey test showed significant differences in bond strength (P \u3c .001) between group 1 and groups 2 and 3 but no significant difference (P \u3e .05) between groups 2 and 3. A Weibull analysis demonstrated that all three groups provided sufficient bond strength with over 90% survival rate at normal masticatory and orthodontic force levels. A Kruskal-Wallis test showed no significant difference (P \u3e .05) in ARI scores among all three groups.
Conclusions: All three groups demonstrated clinically acceptable bond strength. The Damon 2 self-ligating bracket exhibited satisfactory in vitro bond strength with both adhesive systems used
- …