1,242 research outputs found

    Extremal attractors of Liouville copulas

    Get PDF
    Liouville copulas, which were introduced in McNeil and Neslehova (2010), are asymmetric generalizations of the ubiquitous Archimedean copula class. They are the dependence structures of scale mixtures of Dirichlet distributions, also called Liouville distributions. In this paper, the limiting extreme-value copulas of Liouville copulas and of their survival counterparts are derived. The limiting max-stable models, termed here the scaled extremal Dirichlet, are new and encompass several existing classes of multivariate max-stable distributions, including the logistic, negative logistic and extremal Dirichlet. As shown herein, the stable tail dependence function and angular density of the scaled extremal Dirichlet model have a tractable form, which in turn leads to a simple de Haan representation. The latter is used to design efficient algorithms for unconditional simulation based on the work of Dombry, Engelke and Oesting (2015) and to derive tractable formulas for maximum-likelihood inference. The scaled extremal Dirichlet model is illustrated on river flow data of the river Isar in southern Germany.Comment: 30 pages including supplementary material, 6 figure

    A Bayesian view of doubly robust causal inference

    Get PDF
    In causal inference confounding may be controlled either through regression adjustment in an outcome model, or through propensity score adjustment or inverse probability of treatment weighting, or both. The latter approaches, which are based on modelling of the treatment assignment mechanism and their doubly robust extensions have been difficult to motivate using formal Bayesian arguments, in principle, for likelihood-based inferences, the treatment assignment model can play no part in inferences concerning the expected outcomes if the models are assumed to be correctly specified. On the other hand, forcing dependency between the outcome and treatment assignment models by allowing the former to be misspecified results in loss of the balancing property of the propensity scores and the loss of any double robustness. In this paper, we explain in the framework of misspecified models why doubly robust inferences cannot arise from purely likelihood-based arguments, and demonstrate this through simulations. As an alternative to Bayesian propensity score analysis, we propose a Bayesian posterior predictive approach for constructing doubly robust estimation procedures. Our approach appropriately decouples the outcome and treatment assignment models by incorporating the inverse treatment assignment probabilities in Bayesian causal inferences as importance sampling weights in Monte Carlo integration.Comment: Author's original version. 21 pages, including supplementary materia

    Rapport de la commission Alleyn

    Get PDF
    • …
    corecore