93 research outputs found
Io's atmosphere detected by ground-based microwave spectroscopy
Io's corona and extended atmosphere, i.e., the plasma torus and neutral Na and K clouds, were the subject of intensive ground-based studies. E. Lellouch et al. not only detected but also fully resolved the profiles of two pure rotational lines of SO2. The lines were found in emission showing that early theoretical predictions for a thermally inverted atmospheric structure were correct
Halley's spin state determined
Since VEGA and GIOTTO flybys of comet Halley, there was a rising controversy about the nature of the spin state of its nucleus. The problem was resolved by M. J. S. Belton et al., who found a spin state that simultaneously satisfies the VEGA and GIOTTO imaging data and a wide range of ground-based data. The total spin is not fixed in the nucleus but is inclined to the total angular momentum vector at an average angle of 21.4 deg and precesses around it with an average period of 3.69 days
Low cost missions to explore the diversity of near Earth objects
We propose a series of low-cost flyby missions to perform a reconnaissance of near-Earth cometary nuclei and asteroids. The primary scientific goal is to study the physical and chemical diversity in these objects. The mission concept is based on the Pegasus launch vehicle. Mission costs, inclusive of launch, development, mission operations, and analysis are expected to be near $50 M per mission. Launch opportunities occur in all years. The benefits of this reconnaissance to society are stressed
International workshop on Time-Variable Phenomena in the Jovian System
Many of the scientifically interesting phenomena that occur in the Jovian system are strongly time variable. Some are episodic (e.g., Io volcanism); some are periodic (wave transport in Jupiters atmosphere); and some are exceedingly complex (magnetosphere - Io - Torus-Auroral interactions) and possibly unstable. To investigate this class of phenomena utilizing Voyager data and, in the future, Galileo results, a coherent program of ground based and earth-orbital observations, and of theory that spans the time between the missions, is required. To stimulate and help define the basis of such a scientific program researchers organized an International Workshop on the subject with the intent of publishing the proceedings which would represent the state of knowledge in 1987
Galileo-related ground-based observations of the Jovian System
The scientific objectives are to make millimeter observations of SO2 and other neutral molecules in Io's atmosphere and to conduct a program of observational and interpretive studies of the Jovian system in connection with the Galileo mission
Analysis and interpretation of CCD data on P/Halley and physical parameters and activity status of cometary nuclei at large heliocentric distance
The scientific objectives were as follows: (1) to construct a well sampled photometric time series of comet Halley extending to large heliocentric distances both post and pre-perihelion passage and derive a precise ephemeris for the nuclear spin so that the physical and chemical characteristics of individual regions of activity on the nucleus can be determined; and (2) to extend the techniques in the study of Comet Halley to the study of other cometary nuclei and to obtain new observational data
Reduction and analysis of photometric data on Comet Halley
The discovery that periodic variations in the brightness of Comet Halley were characterized by two unrelated frequencies implies that the nucleus is in a complex state of rotation. It either nutates as a result of the random addition of small torque perturbations accumulated over many perihelion passages, or the jet activity torques are so strong that it precesses wildly at each perihelion passage. To diagnose the state of nuclear rotation, researchers began a program to acquire photometric time series of the comet as it recedes from the sun. The intention is to observe the decay of the comet's atmosphere and then, when it is unemcumbered by the light of the coma, follow the light variation of the nucleus itself. The latter will be compared with preperihelion time series and the orientation of the nucleus at the time of Vega and Giotto flybys and an accurate rotational ephemeris constructed. Halley was observed on 38 nights during 1987 and approximately 21 nights in 1988. The comet moved from 5 AU to 8.5 AU during this time. The brightness of the coma was found to rapidly decrease in 1988 as the coma and cometary activity collapses. The magnitude in April 1988 was 19 mag (visual) and it is predicted that the nucleus itself will be the major contributor to the brightness in the 1988 and 1989 season
Spectra of comet P/Halley at R = 4 - 8 AU
Spectra of Comet Halley (lambda lambda = 3400-6500 A) were acquired at pre- and post-perihelion distances of 4.8 AU on 1985 Feb. 17 (Coma V equals 18.9 mag) and 1987 Feb. 1 (coma V = 15.9 mag) using the 4.5-m Multiple-Mirror Telescope (MMT) and the CTIO 4.0-m telescope, respectively. The CN(0,0) violet system band flux at 4.8 AU was approx. 15 times greater at the post-perhelion phase compared to pre-perihelion. Additional post-perihelion spectra, obtained on 1986 Nov. 28 to 30 with the MTT, showed CN(0,0) and very weak C3 4040 A emission. The MMT data are one-dimensional spectra (aperture: 5 arc sec diameter) obtained with an intensified Reticon while the CTIO data are two-dimensional spectra (slit length = 280 arc sec) obtained with a 2D-Frutti photon counting system. Extended CN(0,0) emission was detected in the 1987 Feb. 1 (at 4.8 AU) spectra to a distance of at least 70 arc sec in the solar and anti-solar directions. Additional CCD spectra obtained with the KPNO 2.2-meter telescope on 1988 Feb. 20 (at 7.9 AU) show scattered solar continuum approx. 32 arc sec diameter. However, no emission features were detected at 7.9 AU
Comments on the Rotational State and Non-Gravitational Forces of Comet 46/WIRTANEN
We apply our experience of modeling the rotational state and non-gravitational forces of comet 1 P/Halley and other comets to comet 46P/Wirtanen. While the paucity of physical data on 46P/Wirtanen makes this process somewhat speculative, this comet's place as target for the important Rosetta mission gives significance to such a study. Our arguments are based on the summary of observational data provided by Jorda and Rickman (1995) and a comparative study of the behavior of other periodic comets. We find 46P/Wirtanen to have a level of surface activity relative to its mass that is dynamically more akin to that found in comet 1 P/Halley than in a typical periodic comet. We show through an illustrative numerical example that this apparent fact should likely lead to an excited spin state for this comet and that significant changes in the spin period could occur in a single pass through perihelion. We argue that the available observations are not sufficient to substantiate the claim of Jorda and Rickman (1995) that the nucleus is undergoing retrograde rotation and it is possible that the rotation is either prograde as well as retrograde. The substantial requirements that must be placed on any future observing program necessary to determine the precise rotational state are outlined. We advocate an extended (approx. two month) southern hemisphere observing campaign to determine the nuclear rotational state in 1996 if possible before activity turns on
- …